Free cookie consent management tool by TermsFeed Policy Generator
wiki:UsersSamples

Version 22 (modified by gkronber, 14 years ago) (diff)

--

Samples

This section provides additional sample files for the HeuristicLab 3.3 Optimizer some of which are included as demo samples in the Optimizer.

Travelling Salesman

  • Genetic Algorithm - TSP: A genetic algorithm which solves rge "ch130" travelling salesman problem (imported from TSPLIB)
  • Island Genetic Algorithm - TSP: An island genetic algorithm which solves the "ch130" traveling salesman problem (imported from TSPLIB)
  • Tabu Search - TSP: A tabu search algorithm that solves the "ch130" TSP (imported from TSPLIB)

Genetic Algorithm - TSP

This sample demonstrates how to employ a genetic algorithm to optimize a travelling salesman problem instance, namely "ch130" from the TSP Lib.

Algorithm: Genetic Algorithm?

Algorithm Parameters:

  • PopulationSize: 100
  • Elites: 1
  • MutationProbability: 5%
  • MaximumGenerations: 1000
  • Selector: ProportionalSelector
  • Crossover: Crossover2 (cf. Affenzeller, M. et al. 2009. Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. CRC Press. p. 135)
  • Mutator: InversionManipulator

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: TSPRoundedEuclideanPathEvaluator?
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Island Genentic Algorithm - TSP

Algorithm: Island Genetic Algorithm

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • Crossover: !OrderCrossover2
  • Elites: 1
  • EmigrantsSelector: BestSelector
  • ImmigrationReplacer: WorstReplacer
  • IslandAnalyzer: MultiAnalyzer
  • MaximumGenerations: 1000
  • MigrationInterval: 50
  • MigrationRate: 25%
  • Migrator: UnidirectionalRingMigrator
  • MutationProbability: 5%
  • Mutator: InversionManipulator
  • NumberOfIslands: 5
  • PopulationSize: 100
  • Seed: -
  • Selector: ProportionalSelector
  • SetSeedRandomly: True

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: !TSPRoundedEuclideanPathEvaluator
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Tabu Search - TSP

Algorithm: Tabu Search

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • MaximumIterations: 1000
  • MoveEvaluator: TSPInversionMoveRoundedEuclideanPathEvaluator
  • MoveGenerator: StochasticInversionMultiMoveGenerator
  • MoveMaker: InversionMoveMaker
  • SampleSize: 500
  • Seed: -
  • SetSeedRandomly: True
  • TabuChecker: InversionMoveSoftTabuCriterion
  • TabuMaker: InversionMoveTabuMaker
  • TabuTenure: 60

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: TSPRoundedEuclideanPathEvaluator
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Real-valued Test Functions


Evolution Strategy - Griewank

A pre-defined evolution strategy which solves the 10-dimensional [TestFunctions#GriewankFunction Griewank test function]. HeuristicLab 3 provides a set of real valued test functions for benchmarking purposes. For a full overview please go the [TestFunctions Test Functions] wiki page.

Algorithm: Evolution Strategy?

Algorithm Parameters:

  • Population Size: 20
  • Children: 500
  • MaximumGenerations: 200
  • ParentsPerChild: 5
  • PlusSelection: False (Comma Selection)
  • Recombinator: AverageCrossover
  • Mutator: NormalAllPositionsManipulator

Problem: Single Objective Test Function

Problem Parameters:

  • BestKnownQuality: 0
  • BestKnownSolution: [0;0;0;0;0;0;0;0;0;0]
  • Bounds: [-600, 600]
  • Evaluator: GriewankEvaluator
  • Maximization: False
  • ProblemSize: 10
  • SolutionCreator: UniformRandomRealVectorCreator

Simulated Annealing - Rastrigin

Algorithm: Simulated Annealing

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • AnnealingOperator: ExponentialDiscreteDoubleValueModifier
  • EndTemperature: 1E-06
  • InnerIterations: 50
  • MaximumIterations: 1000
  • MoveEvaluator: RastriginAdditiveMoveEvaluator
  • MoveGenerator: StochasticNormalMultiMoveGenerator
  • MoveMaker: AdditiveMoveMaker
  • Seed: -
  • SetSeedRandomly: True
  • StartTemperature: 1

Problem: Single Objective Test Function

Problem Parameters:

  • BestKnownQuality: 0
  • BestKnownSolution: [0;0]
  • Bounds: ([-5, 12], [-5,12])
  • Evaluator: RastriginEvaluator
  • Maximization: False
  • ProblemSize: 2
  • SolutionCreator: UniformRandomRealVectorCreator

Genetic Programming


Genetic programming - Artificial Ant Problem

SGP_SantaFe.hl GP Result for SantaFe Ant Trial

Algorithm: Genetic Algorithm?

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • Crossover: SubtreeCrossover - An operator which performs subtree swapping crossover
  • Elites: 1
  • MaximumGenerations: 100
  • MutationProbability: 15%
  • Mutator: MultiSymbolicExpressionTreeManipulator
  • Population Size: 500
  • Seed: -
  • Selector: TournamentSelector
  • SetSeedRandomly: True

Problem: Artificial Ant Problem?

Problem Parameters:

  • ArtificialAntExpressionGrammar: IfFoodAhead, Prog2, Prog3, Right, Left, Move
  • BestKnownQuality: 89
  • Evaluator: ArtificialAntEvaluator
  • MaxExpressionDepth: 6
  • MaxExpressionLength: 50
  • MaxFunctionArguments: 3
  • MaxFunctionDefinitions: 3
  • Maximization: True
  • MaxTimeSteps: 600
  • SolutionCreator: ProbabilisticTreeCreator
  • World: 32x32 grid, 89 randomly scattered food items

Genetic programming - Symbolic Regression (Boston Housing)

SGP_SymbReg-Boston-Housing.hl

Example for a simple genetic programming algorithm to create a regression model for the estimation of the median value of houses in a certain in the Boston area based on other parameters of that region. The original dataset was downloaded from http://archive.ics.uci.edu/ml/datasets/Housing.

Algorithm: Genetic Algorithm?

Algorithm Parameters:

Problem: Symbolic Regression Problem

Problem Parameters:

  • BestKnownQuality: null
  • DataAnalysisProblemData: Data imported from Housing Dataset from UCI Repository (cf. http://archive.ics.uci.edu/ml/datasets/Housing)
  • Evaluator: SymbolicRegressionScaledMeanSquaredErrorEvaluator
  • FunctionTreeGrammar: Addition, Subtraction, Multiplication, Division, Constant, Variable
  • LowerEstimationLimit: -289,08968253968254
  • MaxExpressionDepth: 10
  • MaxExpressionLength: 100
  • MaxFunctionArguments: 0
  • MaxFunctionDefiningBranches: 0
  • Maximization: False
  • SolutionCreator: ProbabilisticTreeCreator
  • SymbolicExpressionTreeInterpreter: -
  • UpperEstimationLimit: 332,91031746031746

Genetic programming - Symbolic Regression (Tower)

SGP_SymbReg.hl

Example for a simple genetic programming algorithm to create a regression model for the estimation of a product quality parameter in an industrial chemical process. The original dataset was downloaded from http://vanillamodeling.com/realproblems.html.

  • Population size: 500
  • Generations: 100
  • Tournament selection: group size=7
  • Mutation rate: 15%
  • Function set: +, *, -, /, average, log, power, root, exponential
  • Terminal set: constants, x01, x02, x03, x04, x05, x06, x08, x09, x10, x12, x14, x15, x17, x18, x19, x20, x22, x23, x24
  • Fitness function: R² of predicted and original tower response

Genetic programming - Symbolic Regression (Mackey-Glass)

[attachement:SGP_SymbReg-Mackey-Glass.hl]

Example for a simple genetic programming algorithm to create a dynamic model for the one-step prediction of the chaotic Mackey Glass (T=17) time series. The original dataset was downloaded from http://www.bme.ogi.edu/~ericwan/data.html.

  • Population size: 500
  • Generations: 100
  • Tournament selection: group size=7
  • Mutation rate: 15%
  • Function set: +, *, -, /, average, log, power, root, exponential
  • Terminal set: constants, x(t-90) .. x(t-1)
  • Fitness function: R²(xPred(t), xOrig(t))

Genetic programming - Symbolic Classification (Wisconsin)

SGP_Classification-WDPC.hl

Example for a simple genetic programming algorithm to create a classification model for the estimation of malignant or benign tumor diagnosis based on features extracted through analysis of tumorous cells in a tissue sample. The original dataset was downloaded from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)). The algorithm uses all available GP manipulation operators, single-point cross-over and squared Pearson's correlation coefficient evaluation.

The algorithm reaches an accuracy of ~95% on the test set. This algorithm is supposed to be a demo for GP in HeuristicLab, the aim is not to find high quality models.


Genetic programming - Symbolic Classification (Mammography)

SGP_SymbClass_Mammographic.hl

A genetic programming algorithm to create a classification model for the prediction of malignant or benign tumor diagnosis based on features extracted through a non-invasive mammography breast cancer screening. Original dataset stems from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass).


Genetic Programming - Even Parity (4 inputs)

SGP_Boolean-Even-Parity-4.hl

A genetic programming algorithm to synthesize the boolean even parity function with 4 binary inputs

  • Population size: 4000
  • Generations: 100
  • Function set: AND, OR, NOT
  • Terminal set: D0, D1, D2, D3
  • Max. function defining branches: 3
  • Max. function arguments: 3

Up to three automatically defined functions (ADF), each with up to three arguments, are allowed.

====References==== John R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection, MIT Press, 1992


Genetic Programming - Multiplexer (11 inputs)

SGP_Boolean-Multiplexer-11.hl

A genetic programming algorithm to synthesize the boolean multiplexer function with 11 binary inputs

  • Population size: 4000
  • Generations: 100
  • Function set: IF, AND, OR, NOT
  • Terminal set: A0, A1, A2, D0, D1, D2, D3, D4, D5, D6, D7

====References==== John R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection, MIT Press, 1992


Additional


Local Search - Knapsack

Algorithm: Local Search

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • MaximumIterations: 1000
  • MoveEvaluator: KnapsackOneBitflipMoveEvaluator
  • MoveGenerator: ExhaustiveBitflipMoveGenerator
  • MoveMaker: OneBitflipMoveMaker
  • SampleSize: 100
  • Seed: -
  • SetSeedRandomly: True

Problem: Knapsack Problem?

Problem Parameters:

  • BestKnownQuality: 226
  • BestKnownSolution: Binary Vector
  • Evaluator: KnapsackEvaluator
  • KnapsackCapacity: 134
  • Maximization: True
  • Penalty: 1
  • SolutionCreator: RandomBinaryVectorCreator
  • Values: The values of the items.
  • Weights: The weights of the items.

Attachments (7)

Download all attachments as: .zip