Free cookie consent management tool by TermsFeed Policy Generator
wiki:UsersSamples

Version 16 (modified by gkronber, 14 years ago) (diff)

added separator lines

Samples

This section provides additional sample files for the HeuristicLab 3.3 Optimizer some of which are included as demo samples in the Optimizer.

Travelling Salesman

  • Genetic Algorithm - TSP: A genetic algorithm which solves rge "ch130" travelling salesman problem (imported from TSPLIB)
  • Island Genetic Algorithm - TSP: An island genetic algorithm which solves the "ch130" traveling salesman problem (imported from TSPLIB)
  • Tabu Search - TSP: A tabu search algorithm that solves the "ch130" TSP (imported from TSPLIB)

Genetic Algorithm - TSP

This sample demonstrates how to employ a genetic algorithm to optimize a travelling salesman problem instance, namely "ch130" from the TSP Lib.

Algorithm: Genetic Algorithm?

Algorithm Parameters:

  • PopulationSize: 100
  • Elites: 1
  • MutationProbability: 5%
  • MaximumGenerations: 1000
  • Selector: ProportionalSelector
  • Crossover: Crossover2 (cf. Affenzeller, M. et al. 2009. Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. CRC Press. p. 135)
  • Mutator: InversionManipulator

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: TSPRoundedEuclideanPathEvaluator?
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Island Genentic Algorithm - TSP

Algorithm: Island Genetic Algorithm

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • Crossover: !OrderCrossover2
  • Elites: 1
  • EmigrantsSelector: BestSelector
  • ImmigrationReplacer: WorstReplacer
  • IslandAnalyzer: MultiAnalyzer
  • MaximumGenerations: 1000
  • MigrationInterval: 50
  • MigrationRate: 25%
  • Migrator: UnidirectionalRingMigrator
  • MutationProbability: 5%
  • Mutator: InversionManipulator
  • NumberOfIslands: 5
  • PopulationSize: 100
  • Seed: -
  • Selector: ProportionalSelector
  • SetSeedRandomly: True

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: !TSPRoundedEuclideanPathEvaluator
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Tabu Search - TSP

Algorithm: Tabu Search

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • MaximumIterations: 1000
  • MoveEvaluator: TSPInversionMoveRoundedEuclideanPathEvaluator
  • MoveGenerator: StochasticInversionMultiMoveGenerator
  • MoveMaker: InversionMoveMaker
  • SampleSize: 500
  • Seed: -
  • SetSeedRandomly: True
  • TabuChecker: InversionMoveSoftTabuCriterion
  • TabuMaker: InversionMoveTabuMaker
  • TabuTenure: 60

Problem: Travelling Salesman Problem?

Problem Parameters:

  • BestKnownQuality: 6110
  • BestKnownSolution: The best known solution of this TSP instance (cf. TSP Lib)
  • Coordinates: The x and y coordinates of the cities
  • DistanceMatrix: null
  • Evaluator: TSPRoundedEuclideanPathEvaluator
  • Maximization: False
  • SolutionCreator: RandomPermutationCreator
  • UseDistanceMatrix: True

Real-valued Test Functions


Evolution Strategy - Griewank

A pre-defined evolution strategy which solves the 10-dimensional [TestFunctions#GriewankFunction Griewank test function]. HeuristicLab 3 provides a set of real valued test functions for benchmarking purposes. For a full overview please go the [TestFunctions Test Functions] wiki page.

Algorithm: Evolution Strategy?

Algorithm Parameters:

  • Population Size: 20
  • Children: 500
  • MaximumGenerations: 200
  • ParentsPerChild: 5
  • PlusSelection: False (Comma Selection)
  • Recombinator: AverageCrossover
  • Mutator: NormalAllPositionsManipulator

Problem: Single Objective Test Function

Problem Parameters:

  • BestKnownQuality: 0
  • BestKnownSolution: [0;0;0;0;0;0;0;0;0;0]
  • Bounds: [-600, 600]
  • Evaluator: GriewankEvaluator
  • Maximization: False
  • ProblemSize: 10
  • SolutionCreator: UniformRandomRealVectorCreator

Simulated Annealing - Rastrigin

Algorithm: Simulated Annealing

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • AnnealingOperator: ExponentialDiscreteDoubleValueModifier
  • EndTemperature: 1E-06
  • InnerIterations: 50
  • MaximumIterations: 1000
  • MoveEvaluator: RastriginAdditiveMoveEvaluator
  • MoveGenerator: StochasticNormalMultiMoveGenerator
  • MoveMaker: AdditiveMoveMaker
  • Seed: -
  • SetSeedRandomly: True
  • StartTemperature: 1

Problem: Single Objective Test Function

Problem Parameters:

  • BestKnownQuality: 0
  • BestKnownSolution: [0;0]
  • Bounds: ([-5, 12], [-5,12])
  • Evaluator: RastriginEvaluator
  • Maximization: False
  • ProblemSize: 2
  • SolutionCreator: UniformRandomRealVectorCreator

Genetic Programming


Genetic programming for artificial ant problem

GP Result for SantaFe Ant Trial

Algorithm: Genetic Algorithm?

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • Crossover: SubtreeCrossover - An operator which performs subtree swapping crossover
  • Elites: 1
  • MaximumGenerations: 100
  • MutationProbability: 15%
  • Mutator: MultiSymbolicExpressionTreeManipulator
  • Population Size: 500
  • Seed: -
  • Selector: TournamentSelector
  • SetSeedRandomly: True

Problem: Artificial Ant Problem?

Problem Parameters:

  • ArtificialAntExpressionGrammar: IfFoodAhead, Prog2, Prog3, Right, Left, Move
  • BestKnownQuality: 89
  • Evaluator: ArtificialAntEvaluator
  • MaxExpressionDepth: 6
  • MaxExpressionLength: 50
  • MaxFunctionArguments: 3
  • MaxFunctionDefinitions: 3
  • Maximization: True
  • MaxTimeSteps: 600
  • SolutionCreator: ProbabilisticTreeCreator
  • World: 32x32 grid, 89 randomly scattered food items

Genetic programming for symbolic regression

Algorithm: Genetic Algorithm?

Algorithm Parameters:

Problem: Symbolic Regression Problem

Problem Parameters:

  • BestKnownQuality: null
  • DataAnalysisProblemData: Data imported from Housing Dataset from UCI Repository (cf. http://archive.ics.uci.edu/ml/datasets/Housing)
  • Evaluator: SymbolicRegressionScaledMeanSquaredErrorEvaluator
  • FunctionTreeGrammar: Addition, Subtraction, Multiplication, Division, Constant, Variable
  • LowerEstimationLimit: -289,08968253968254
  • MaxExpressionDepth: 10
  • MaxExpressionLength: 100
  • MaxFunctionArguments: 0
  • MaxFunctionDefiningBranches: 0
  • Maximization: False
  • SolutionCreator: ProbabilisticTreeCreator
  • SymbolicExpressionTreeInterpreter: -
  • UpperEstimationLimit: 332,91031746031746

Additional


Local Search - Knapsack

Algorithm: Local Search

Algorithm Parameters:

  • Analyzer: MultiAnalyzer
  • MaximumIterations: 1000
  • MoveEvaluator: KnapsackOneBitflipMoveEvaluator
  • MoveGenerator: ExhaustiveBitflipMoveGenerator
  • MoveMaker: OneBitflipMoveMaker
  • SampleSize: 100
  • Seed: -
  • SetSeedRandomly: True

Problem: Knapsack Problem?

Problem Parameters:

  • BestKnownQuality: 226
  • BestKnownSolution: Binary Vector
  • Evaluator: KnapsackEvaluator
  • KnapsackCapacity: 134
  • Maximization: True
  • Penalty: 1
  • SolutionCreator: RandomBinaryVectorCreator
  • Values: The values of the items.
  • Weights: The weights of the items.

Attachments (7)

Download all attachments as: .zip