- Timestamp:
- 07/23/17 00:52:14 (7 years ago)
- Location:
- branches/Async
- Files:
-
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/Async
- Property svn:mergeinfo changed
-
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic (added) merged: 13395,13397,13616,13916,13921,13933,13941
- Property svn:mergeinfo changed
-
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Creators/MultiSymbolicDataAnalysisExpressionCreator.cs
r12108 r15280 35 35 36 36 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Creators { 37 [StorableClass] 37 38 public class MultiSymbolicDataAnalysisExpressionCreator : StochasticMultiBranch<ISymbolicDataAnalysisSolutionCreator>, 38 39 ISymbolicDataAnalysisSolutionCreator, -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionContextAwareCrossover.cs
r12422 r15280 34 34 "- Randomly choose a node N from P1\n" + 35 35 "- Test all crossover points from P0 to determine the best location for N to be inserted")] 36 [StorableClass] 36 37 public sealed class SymbolicDataAnalysisExpressionContextAwareCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { 37 38 [StorableConstructor] -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionCrossover.cs
r12012 r15280 32 32 33 33 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 34 [StorableClass] 34 35 public abstract class SymbolicDataAnalysisExpressionCrossover<T> : SymbolicExpressionTreeCrossover, ISymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { 35 36 private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionDepthConstrainedCrossover.cs
r12422 r15280 36 36 "- Standard (mid 50% of the tree)\n" + 37 37 "- LowLevel (lower 25% of the tree)")] 38 [StorableClass] 38 39 public sealed class SymbolicDataAnalysisExpressionDepthConstrainedCrossover<T> : 39 40 SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionDeterministicBestCrossover.cs
r12422 r15280 34 34 "- Randomly choose a crossover point C from P0\n" + 35 35 "- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")] 36 [StorableClass] 36 37 public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { 37 38 [StorableConstructor] -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover.cs
r12422 r15280 36 36 "\t\tD(N,M) = 0.5 * ( abs(max(N) - max(M)) + abs(min(N) - min(M)) )\n" + 37 37 "- Make a probabilistic weighted choice of node M from P1, based on the inversed and normalized behavioral distance")] 38 [StorableClass] 38 39 public sealed class SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { 39 40 [StorableConstructor] -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Crossovers/SymbolicDataAnalysisExpressionSemanticSimilarityCrossover.cs
r12422 r15280 37 37 "- Find the first node M that satisfies the semantic similarity criteria\n" + 38 38 "- Swap N for M and return P0")] 39 [StorableClass] 39 40 public sealed class SymbolicDataAnalysisExpressionSemanticSimilarityCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData { 40 41 private const string SemanticSimilarityRangeParameterName = "SemanticSimilarityRange"; -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisEvaluator.cs
r12012 r15280 93 93 public SymbolicDataAnalysisEvaluator() 94 94 : base() { 95 Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use.") );96 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.") );97 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree.") );98 Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.") );99 Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.") );100 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.") );101 Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.") );102 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.") );103 Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional).") );95 Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use.") { Hidden = true }); 96 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.") { Hidden = true }); 97 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree.") { Hidden = true }); 98 Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.") { Hidden = true }); 99 Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.") { Hidden = true }); 100 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.") { Hidden = true }); 101 Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.") { Hidden = true }); 102 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.") { Hidden = true }); 103 Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional).") { Hidden = true }); 104 104 } 105 105 -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisMultiObjectiveEvaluator.cs
r12012 r15280 24 24 using HeuristicLab.Core; 25 25 using HeuristicLab.Data; 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 27 using HeuristicLab.Parameters; 27 28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;29 29 30 30 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 31 [StorableClass] 31 32 public abstract class SymbolicDataAnalysisMultiObjectiveEvaluator<T> : SymbolicDataAnalysisEvaluator<T>, ISymbolicDataAnalysisMultiObjectiveEvaluator<T> 32 33 where T : class, IDataAnalysisProblemData { -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Formatters/SymbolicDataAnalysisExpressionLatexFormatter.cs
r12012 r15280 403 403 var constStr = string.Format(System.Globalization.NumberFormatInfo.InvariantInfo, "{0:G5}", constant); 404 404 if (!constStr.Contains(".")) constStr = constStr + ".0"; 405 constStr = constStr.Replace(".", " \\negthickspace&."); // fix problem in rendering of aligned expressions405 constStr = constStr.Replace(".", "&."); // fix problem in rendering of aligned expressions 406 406 strBuilder.Append("c_{" + i + "}& = & " + constStr); 407 407 strBuilder.Append(@"\\"); -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisModel.cs
r12012 r15280 21 21 22 22 using System; 23 using System.Collections.Generic; 23 24 using System.Drawing; 25 using System.Linq; 24 26 using HeuristicLab.Common; 25 27 using HeuristicLab.Core; … … 56 58 get { return interpreter; } 57 59 } 60 61 public IEnumerable<string> VariablesUsedForPrediction { 62 get { 63 var variables = 64 SymbolicExpressionTree.IterateNodesPrefix() 65 .OfType<VariableTreeNode>() 66 .Select(x => x.VariableName) 67 .Distinct(); 68 var variableConditions = SymbolicExpressionTree.IterateNodesPrefix() 69 .OfType<VariableConditionTreeNode>().Select(x => x.VariableName).Distinct(); 70 71 return variables.Union(variableConditions).OrderBy(x => x); 72 } 73 } 74 58 75 #endregion 59 76 … … 160 177 } 161 178 #endregion 179 162 180 } 163 181 } -
branches/Async/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/VariableCondition.cs
r13255 r15280 100 100 allVariableNames.Clear(); 101 101 allVariableNames.AddRange(value); 102 VariableNames = value;103 102 } 104 103 }
Note: See TracChangeset
for help on using the changeset viewer.