Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
12/09/16 15:56:22 (8 years ago)
Author:
abeham
Message:

#2701:

  • Updated GraphColoringProblem and Problems.Instances
    • Added new fitness function from literature
    • Added DIMACS benchmark instances
  • Updated LinearLinkageEncoding
    • Added HammingSimilarityCalculator
File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/LinearLinkage/LinearLinkageMemPR.cs

    r14466 r14471  
    5858
    5959    protected override bool Eq(ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> a, ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> b) {
    60       return a.Solution.SequenceEqual(b.Solution);
     60      var s1 = a.Solution;
     61      var s2 = b.Solution;
     62      if (s1.Length != s2.Length) return false;
     63      for (var i = 0; i < s1.Length; i++)
     64        if (s1[i] != s2[i]) return false;
     65      return true;
    6166    }
    6267
    6368    protected override double Dist(ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> a, ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> b) {
    64       if (a.Solution.Length != b.Solution.Length) throw new ArgumentException("Comparing encodings of unequal length");
    65       var dist = 0;
    66       for (var i = 0; i < a.Solution.Length; i++) {
    67         if (a.Solution[i] != b.Solution[i]) dist++;
    68       }
    69       return dist / (double)a.Solution.Length;
     69      return HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution);
    7070    }
    7171
     
    9494    protected override int TabuWalk(ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> scope, int maxEvals, CancellationToken token, ISolutionSubspace<Encodings.LinearLinkageEncoding.LinearLinkage> subspace = null) {
    9595      return 0;
     96      /*Func<Encodings.LinearLinkageEncoding.LinearLinkage, IRandom, double> eval = new EvaluationWrapper<Encodings.LinearLinkageEncoding.LinearLinkage>(Context.Problem, scope).Evaluate;
     97      var quality = scope.Fitness;
     98      var lle = scope.Solution;
     99      var random = Context.Random;
     100      var evaluations = 0;
     101      var maximization = Context.Problem.Maximization;
     102      if (double.IsNaN(quality)) {
     103        quality = eval(lle, random);
     104        evaluations++;
     105      }
     106      Encodings.LinearLinkageEncoding.LinearLinkage bestOfTheWalk = null;
     107      double bestOfTheWalkF = double.NaN;
     108      var current = (Encodings.LinearLinkageEncoding.LinearLinkage)lle.Clone();
     109      var currentF = quality;
     110      var overallImprovement = false;
     111      var tabu = new double[current.Length, current.Length];
     112      for (var i = 0; i < current.Length; i++) {
     113        for (var j = i; j < current.Length; j++) {
     114          tabu[i, j] = tabu[j, i] = double.MaxValue;
     115        }
     116        tabu[i, current[i]] = currentF;
     117      }
     118
     119      var steps = 0;
     120      var stepsUntilBestOfWalk = 0;
     121      for (var iter = 0; iter < int.MaxValue; iter++) {
     122        var allTabu = true;
     123        var bestOfTheRestF = double.NaN;
     124        object bestOfTheRest = null;
     125        var improved = false;
     126        foreach () {
     127          if (subspace != null && !(subspace[swap.Index1, 0] && subspace[swap.Index2, 0]))
     128            continue;
     129
     130
     131          var q = eval(current, random);
     132          evaluations++;
     133          if (FitnessComparer.IsBetter(maximization, q, quality)) {
     134            overallImprovement = true;
     135            quality = q;
     136            for (var i = 0; i < current.Length; i++) lle[i] = current[i];
     137          }
     138          // check if it would not be an improvement to swap these into their positions
     139          var isTabu = !FitnessComparer.IsBetter(maximization, q, tabu[swap.Index1, current[swap.Index1]])
     140                    && !FitnessComparer.IsBetter(maximization, q, tabu[swap.Index2, current[swap.Index2]]);
     141          if (!isTabu) allTabu = false;
     142          if (FitnessComparer.IsBetter(maximization, q, currentF) && !isTabu) {
     143            if (FitnessComparer.IsBetter(maximization, q, bestOfTheWalkF)) {
     144              bestOfTheWalk = (Encodings.LinearLinkageEncoding.LinearLinkage)current.Clone();
     145              bestOfTheWalkF = q;
     146              stepsUntilBestOfWalk = steps;
     147            }
     148            steps++;
     149            improved = true;
     150            // perform the move
     151            currentF = q;
     152            // mark that to move them to their previous position requires to make an improvement
     153            tabu[swap.Index1, current[swap.Index2]] = maximization ? Math.Max(q, tabu[swap.Index1, current[swap.Index2]])
     154                                                                   : Math.Min(q, tabu[swap.Index1, current[swap.Index2]]);
     155            tabu[swap.Index2, current[swap.Index1]] = maximization ? Math.Max(q, tabu[swap.Index2, current[swap.Index1]])
     156                                                                   : Math.Min(q, tabu[swap.Index2, current[swap.Index1]]);
     157          } else { // undo the move
     158            if (!isTabu && FitnessComparer.IsBetter(maximization, q, bestOfTheRestF)) {
     159              bestOfTheRest = swap;
     160              bestOfTheRestF = q;
     161            }
     162            current[swap.Index2] = current[swap.Index1];
     163            current[swap.Index1] = h;
     164          }
     165          if (evaluations >= maxEvals) break;
     166        }
     167        if (!allTabu && !improved && bestOfTheRest != null) {
     168          tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]] = maximization ? Math.Max(currentF, tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]])
     169                                                                                   : Math.Min(currentF, tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]]);
     170          tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]] = maximization ? Math.Max(currentF, tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]])
     171                                                                                   : Math.Min(currentF, tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]]);
     172
     173          var h = current[bestOfTheRest.Index1];
     174          current[bestOfTheRest.Index1] = current[bestOfTheRest.Index2];
     175          current[bestOfTheRest.Index2] = h;
     176
     177          currentF = bestOfTheRestF;
     178          steps++;
     179        } else if (allTabu) break;
     180        if (evaluations >= maxEvals) break;
     181      }
     182      Context.IncrementEvaluatedSolutions(evaluations);
     183      if (!overallImprovement && bestOfTheWalk != null) {
     184        quality = bestOfTheWalkF;
     185        for (var i = 0; i < current.Length; i++) lle[i] = bestOfTheWalk[i];
     186      }
     187      return stepsUntilBestOfWalk;*/
    96188    }
    97189
Note: See TracChangeset for help on using the changeset viewer.