Changeset 11799 for branches/HeuristicLab.Problems.GrammaticalOptimization
- Timestamp:
- 01/19/15 20:09:12 (10 years ago)
- Location:
- branches/HeuristicLab.Problems.GrammaticalOptimization
- Files:
-
- 1 added
- 16 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/BanditPolicies/BoltzmannExplorationPolicy.cs
r11747 r11799 41 41 : Math.Exp(beta * valueFunction(aInfo)); 42 42 43 var bestAction = myActionInfos 44 .Select((aInfo, idx) => new { aInfo, idx }) 45 .SampleProportional(random, w) 46 .Select(p => p.idx) 47 .First(); 43 var bestAction = Enumerable.Range(0, myActionInfos.Count()).SampleProportional(random, w); 48 44 Debug.Assert(bestAction >= 0); 49 45 return bestAction; -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/BanditPolicies/GenericThompsonSamplingPolicy.cs
r11742 r11799 39 39 40 40 public override string ToString() { 41 return string.Format("GenericThompsonSamplingPolicy( \"{0}\")", model);41 return string.Format("GenericThompsonSamplingPolicy({0})", model); 42 42 } 43 43 } -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/Bandits/GaussianMixtureBandit.cs
r11731 r11799 44 44 double x = 0; 45 45 do { 46 var k = Enumerable.Range(0, componentProb[arm].Length).SampleProportional(random, componentProb[arm]) .First();46 var k = Enumerable.Range(0, componentProb[arm].Length).SampleProportional(random, componentProb[arm]); 47 47 48 48 var z = Rand.RandNormal(random); -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/GrammarPolicies/GenericGrammarPolicy.cs
r11793 r11799 14 14 private readonly IProblem problem; 15 15 private readonly IBanditPolicy banditPolicy; 16 //private readonly HashSet<string> done;17 16 18 17 public GenericGrammarPolicy(IProblem problem, IBanditPolicy banditPolicy, bool useCanonicalState = false) { … … 21 20 this.banditPolicy = banditPolicy; 22 21 this.stateInfo = new Dictionary<string, IBanditPolicyActionInfo>(); 23 //this.done = new HashSet<string>();24 22 } 25 23 … … 29 27 // fail because all follow states have already been visited => also disable the current state (if we can be sure that it has been fully explored) 30 28 31 GetStateInfo(curState).Disable( 0.0); // should the value be max of afterstate values instead of 0.0?29 GetStateInfo(curState).Disable(afterStates.Select(afterState => GetStateInfo(afterState).Value).Max()); 32 30 selectedStateIdx = -1; 33 31 return false; … … 50 48 51 49 public virtual void UpdateReward(IEnumerable<string> stateTrajectory, double reward) { 52 // the last state could be terminal 53 var lastState = stateTrajectory.Last(); 54 if (problem.Grammar.IsTerminal(lastState)) { 55 GetStateInfo(lastState).Disable(reward); 56 } 50 foreach (var state in stateTrajectory) { 51 GetStateInfo(state).UpdateReward(reward); 57 52 58 // update remaining states 59 foreach (var state in stateTrajectory.Reverse().Skip(1)) { 60 GetStateInfo(state).UpdateReward(reward); 53 // only the last state can be terminal 54 if (problem.Grammar.IsTerminal(state)) { 55 GetStateInfo(state).Disable(reward); 56 } 61 57 } 62 58 } … … 64 60 public virtual void Reset() { 65 61 stateInfo.Clear(); 66 //done.Clear();67 62 } 68 63 … … 81 76 protected string CanonicalState(string state) { 82 77 if (useCanonicalState) { 83 if (problem.Grammar.IsTerminal(state)) 84 return problem.CanonicalRepresentation(state); 85 else { 86 // for non-terminal phrases make sure we don't disable canonical states that have not yet been fully explored 87 // e.g. if for the ant problem we have the phrase lllS (and we are limited to 4 symbols) and lllr as well as llll are explored 88 // then we are not allowed to disable rS (canonical of lllS) because rS might not have been fully explored 89 // solution: we disable the state rS4 90 return problem.CanonicalRepresentation(state) + state.Length; 91 } 78 return problem.CanonicalRepresentation(state); 92 79 } else 93 80 return state; -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/GrammarPolicies/TDPolicy.cs
r11793 r11799 35 35 return false; 36 36 } 37 throw new NotImplementedException(); // TODO: remap indices of reduced action enumerable to indices of original enumerable 37 throw new NotImplementedException(); // TODO: remap indices of reduced action enumerable to indices of original enumerable (see genericgrammarpolicy) 38 38 39 39 //return epsGreedy.TrySelect(random, curState, afterStates, out selectedState); -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.Bandits/Models/GaussianMixtureModel.cs
r11747 r11799 24 24 25 25 public double SampleExpectedReward(Random random) { 26 var k = Enumerable.Range(0, numComponents).SampleProportional(random, componentProbs) .First();26 var k = Enumerable.Range(0, numComponents).SampleProportional(random, componentProbs); 27 27 return alglib.invnormaldistribution(random.NextDouble()) * Math.Sqrt(componentVars[k]) + componentMeans[k]; 28 28 } -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Algorithms.GrammaticalOptimization/SequentialSearch.cs
r11793 r11799 70 70 Reset(); 71 71 72 for (int i = 0; bestQuality < 1.0 &&!Done() && i < maxIterations; i++) {72 for (int i = 0; /*!bestQuality.IsAlmost(1.0) && */!Done() && i < maxIterations; i++) { 73 73 var phrase = SampleSentence(problem.Grammar); 74 74 // can fail on the last sentence … … 97 97 stateChain.Clear(); 98 98 phrase = new Sequence(rootNode.phrase); 99 //var startPhrase = new Sequence("a*b+c*d+e*f+E");100 99 } while (!Done() && !TryCompleteSentence(grammar, ref phrase)); 101 100 return phrase; … … 110 109 111 110 while (!phrase.IsTerminal) { 112 113 114 //if (n.randomTries < randomTries) { 115 // n.randomTries++; 116 // curDepth = Math.Max(curDepth, curDepth); 117 // g.CompleteSentenceRandomly(random, phrase, maxLen); 118 // return true; 119 //} else { 120 // => select using bandit policy 121 // failure means we simply restart 122 GenerateFollowStates(n); // creates child nodes for node n 123 124 int selectedChildIdx; 125 if (!behaviourPolicy.TrySelect(random, n.phrase, n.children.Select(ch => ch.phrase), out selectedChildIdx)) { 126 return false; 127 } 128 phrase.ReplaceAt(phrase.FirstNonTerminalIndex, 1, n.children[selectedChildIdx].alternative); 129 130 // prepare for next iteration 131 n = n.children[selectedChildIdx]; 132 stateChain.Add(n.phrase); 133 curDepth++; 134 //} 111 if (n.randomTries < randomTries) { 112 n.randomTries++; 113 maxSearchDepth = Math.Max(maxSearchDepth, curDepth); 114 g.CompleteSentenceRandomly(random, phrase, maxLen); 115 return true; 116 } else { 117 // => select using bandit policy 118 // failure means we simply restart 119 GenerateFollowStates(n); // creates child nodes for node n 120 121 int selectedChildIdx; 122 if (!behaviourPolicy.TrySelect(random, n.phrase, n.children.Select(ch => ch.phrase), out selectedChildIdx)) { 123 return false; 124 } 125 phrase.ReplaceAt(phrase.FirstNonTerminalIndex, 1, n.children[selectedChildIdx].alternative); 126 127 // prepare for next iteration 128 n = n.children[selectedChildIdx]; 129 stateChain.Add(n.phrase); 130 curDepth++; 131 } 135 132 } // while 136 133 … … 157 154 int idx = 0; 158 155 foreach (var alt in alts) { 159 var newPhrase = new Sequence(phrase); // clone 160 newPhrase.ReplaceAt(newPhrase.FirstNonTerminalIndex, 1, alt); 161 children[idx++] = new TreeNode(newPhrase.ToString(), alt); 156 // var newPhrase = new Sequence(phrase); // clone 157 // newPhrase.ReplaceAt(newPhrase.FirstNonTerminalIndex, 1, alt); 158 // children[idx++] = new TreeNode(newPhrase.ToString(), alt); 159 160 // since we are not using a sequence later on we might directly transform the current sequence to a string and replace there 161 var phraseStr = phrase.ToString(); 162 var sb = new StringBuilder(phraseStr); 163 sb.Remove(phrase.FirstNonTerminalIndex, 1).Insert(phrase.FirstNonTerminalIndex, alt.ToString()); 164 children[idx++] = new TreeNode(sb.ToString(), alt); 162 165 } 163 166 n.children = children; -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Common/Extensions.cs
r11742 r11799 12 12 13 13 public static T SelectRandom<T>(this IEnumerable<T> xs, Random rand) { 14 var xsArr = xs.ToArray();15 return xs Arr[rand.Next(xsArr.Length)];14 var n = xs.Count(); 15 return xs.ElementAt(rand.Next(n)); 16 16 } 17 17 18 public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, Random random, IEnumerable<double> weights) { 19 var sourceArray = source.ToArray(); 20 var valueArray = weights.ToArray(); 21 double total = valueArray.Sum(); 18 public static T SampleProportional<T>(this IEnumerable<T> elements, Random random, IEnumerable<double> weights) { 19 double total = weights.Sum(); 22 20 23 while (true) { 24 int index = 0; 25 double ball = valueArray[index], sum = random.NextDouble() * total; 26 while (ball < sum) 27 ball += valueArray[++index]; 28 yield return sourceArray[index]; 21 var elemEnumerator = elements.GetEnumerator(); 22 elemEnumerator.MoveNext(); 23 var weightEnumerator = weights.GetEnumerator(); 24 weightEnumerator.MoveNext(); 25 26 var r = random.NextDouble() * total; 27 var agg = weightEnumerator.Current; 28 29 while (agg < r) { 30 weightEnumerator.MoveNext(); 31 elemEnumerator.MoveNext(); 32 agg += weightEnumerator.Current; 29 33 } 34 return elemEnumerator.Current; 30 35 } 31 36 … … 44 49 var y = yEnum.Current; 45 50 s += (x - meanX) * (y - meanY); 46 ssX += Math.Pow(x - meanX, 2);47 ssY += Math.Pow(y - meanY, 2);51 ssX += (x - meanX) * (x - meanX); 52 ssY += (y - meanY) * (y - meanY); 48 53 } 49 54 if (xEnum.MoveNext() | yEnum.MoveNext()) throw new ArgumentException("lengths are not equal"); -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Common/HeuristicLab.Common.csproj
r11745 r11799 43 43 <Compile Include="ConsoleEx.cs" /> 44 44 <Compile Include="Extensions.cs" /> 45 <Compile Include="MostRecentlyUsedCache.cs" /> 45 46 <Compile Include="Properties\AssemblyInfo.cs" /> 46 47 <Compile Include="Rand.cs" /> -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/FindPhrasesProblem.cs
r11793 r11799 123 123 } 124 124 125 // TODO: cache canonical phrases in most-recently used dictionary for increased performance (see symbolicregressionpoly10problem) 125 126 private string CanonicalPhrase(string phrase) { 126 127 if (phrasesAsSets) return string.Join("", phrase.OrderBy(ch => (byte)ch)); -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/Grammar.cs
r11793 r11799 203 203 public bool IsTerminal(string phrase) { 204 204 // reverse because for our grammars and left-canonical derivation it is more likely that NTs occur near the end of the sequence 205 return phrase.Reverse().All(IsTerminal); 205 for (int i = phrase.Length - 1; i >= 0; i--) { 206 if (!IsTerminal(phrase[i])) return false; 207 } 208 return true; 206 209 } 207 210 -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/RoyalPhraseSequenceProblem.cs
r11770 r11799 107 107 } 108 108 109 // TODO: cache canonical phrases in most-recently used dictionary for increased performance (see symbolicregressionpoly10problem) 109 110 private string CanonicalPhrase(string phrase) { 110 111 if (phrasesAsSets) return string.Join("", phrase.OrderBy(ch => (byte)ch)); -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/RoyalSequenceProblem.cs
r11792 r11799 31 31 this.correctReward = correctReward; 32 32 this.incorrectReward = incorrectReward; 33 var sentenceSymbol = 'S';33 const char sentenceSymbol = 'S'; 34 34 var terminalSymbols = Enumerable.Range(0, alphabetSize).Select(off => (char)((byte)'a' + off)).ToArray(); 35 var nonTerminalSymbols = new char[] { 'S'};36 var rules = terminalSymbols.Select(t => Tuple.Create( 'S', t.ToString()))37 .Concat(terminalSymbols.Select(t => Tuple.Create( 'S', t + "S")));35 var nonTerminalSymbols = new char[] { sentenceSymbol }; 36 var rules = terminalSymbols.Select(t => Tuple.Create(sentenceSymbol, t.ToString())) 37 .Concat(terminalSymbols.Select(t => Tuple.Create(sentenceSymbol, t + sentenceSymbol.ToString()))); 38 38 //var rules = terminalSymbols.Select(t => Tuple.Create('S', t + "S")) 39 39 // .Concat(terminalSymbols.Select(t => Tuple.Create('S', t.ToString()))); … … 64 64 // sentence must contain only terminal symbols, we are not checking if the sentence is syntactically valid here because it would be too slow! 65 65 Debug.Assert(sentence.Any(c => grammar.IsTerminal(c))); 66 // as long as only correct symbols are found we increase the reward by +167 // on the first incorrect symbol we return68 66 var reward = 0.0; 69 67 for (int i = 0; i < Math.Min(sentence.Length, sequenceLen); i++) { … … 71 69 reward += correctReward; 72 70 } else { 73 // alternativelyreduce reward by number of remaining symbols71 // reduce reward by number of remaining symbols 74 72 return Math.Max(0.0, reward + incorrectReward * (sentence.Length - i)); 75 // stop on first incorrect symbol and return reward76 //return reward;77 73 } 78 74 } … … 80 76 } 81 77 78 // in each position there could be multiple correct and incorrect symbols 82 79 public string CanonicalRepresentation(string terminalPhrase) { 83 throw new NotImplementedException(); 84 return terminalPhrase; 80 var sb = new StringBuilder(); 81 for (int i = 0; i < terminalPhrase.Length; i++) { 82 if (optimalSymbolsForPos[i].Contains(terminalPhrase[i])) { 83 sb.Append(optimalSymbolsForPos[i].First()); // all symbols in the set are equivalent 84 } else { 85 sb.Append(terminalPhrase[i]); 86 } 87 } 88 return sb.ToString(); 85 89 } 86 90 } -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/SantaFeAntProblem.cs
r11793 r11799 2 2 using System.Collections.Generic; 3 3 using System.Linq; 4 using System.Runtime.InteropServices; 4 5 using System.Runtime.Remoting.Messaging; 5 6 using System.Text; 7 using System.Text.RegularExpressions; 6 8 7 9 namespace HeuristicLab.Problems.GrammaticalOptimization { … … 101 103 102 104 public string CanonicalRepresentation(string terminalPhrase) { 105 var sb = new StringBuilder(terminalPhrase); 106 string canonicalPhrase = terminalPhrase; 103 107 string oldPhrase; 104 108 do { 105 oldPhrase = terminalPhrase; 106 terminalPhrase = terminalPhrase.Replace("ll", "rr").Replace("rl", "lr").Replace("lr", "").Replace("lll", "r").Replace("rrr", "l"); 107 } while (terminalPhrase != oldPhrase); 108 return terminalPhrase; 109 oldPhrase = canonicalPhrase; 110 sb.Replace("ll", "rr").Replace("rl", "lr").Replace("lr", "").Replace("lll", "r").Replace("rrr", "l"); 111 canonicalPhrase = sb.ToString(); 112 } while (canonicalPhrase != oldPhrase); 113 sb.Append(terminalPhrase.Length - canonicalPhrase.Length); 114 return sb.ToString(); 109 115 } 110 116 } -
branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization/SymbolicRegressionPoly10Problem.cs
r11792 r11799 1 1 using System; 2 using System.Collections.Concurrent; 2 3 using System.Collections.Generic; 4 using System.Collections.Specialized; 3 5 using System.Linq; 4 6 using System.Net; … … 72 74 73 75 76 // most-recently-used caching (with limited capacity) for canonical representations 77 MostRecentlyUsedCache<string, string> canonicalPhraseCache = new MostRecentlyUsedCache<string, string>(100000); 74 78 // right now only + and * is supported 75 //private Dictionary<string, string> cache = new Dictionary<string, string>();76 79 public string CanonicalRepresentation(string phrase) { 77 string res; 78 //if (!cache.TryGetValue(phrase, out res)) { 79 var terms = phrase.Split('+').Select(t => t.Replace("*", "")); 80 var terminalTerms = terms.Where(t => t.All(ch => grammar.IsTerminal(ch))); 81 var nonTerminalTerms = terms.Where(t => t.Any(ch => grammar.IsNonTerminal(ch))); 80 string canonicalPhrase; 81 if (!canonicalPhraseCache.TryGetValue(phrase, out canonicalPhrase)) { 82 var terms = phrase.Split('+'); 83 var canonicalTerms = new SortedSet<string>(); 84 // only the last term might contain a NT-symbol. make sure this term is added at the end 85 for (int i = 0; i < terms.Length - 1; i++) { 86 canonicalTerms.Add(CanonicalTerm(terms[i])); 87 } 82 88 83 res = string.Join("+", terminalTerms.Select(term => CanonicalTerm(term)).OrderBy(term => term).Concat(nonTerminalTerms.Select(term => CanonicalTerm(term)))); 84 //cache[phrase] = res; 85 //} 86 return res; 89 var sb = new StringBuilder(phrase.Length); 90 foreach (var t in canonicalTerms) 91 sb.Append(t).Append('+'); 92 93 sb.Append(CanonicalTerm(terms[terms.Length - 1])); 94 sb.Append(phrase.Length - sb.Length); 95 canonicalPhrase = sb.ToString(); 96 canonicalPhraseCache.Add(phrase, canonicalPhrase); 97 } 98 return canonicalPhrase; 87 99 } 88 100 101 // cache the canonical form of terms for performance reasons 102 private Dictionary<string, string> canonicalTermDictionary = new Dictionary<string, string>(); 89 103 private string CanonicalTerm(string term) { 90 return string.Join("", term.OrderByDescending(ch => (byte)ch)); // we want to have the up-case characters last 104 string canonicalTerm; 105 if (!canonicalTermDictionary.TryGetValue(term, out canonicalTerm)) { 106 // add 107 var chars = term.ToCharArray(); 108 Array.Sort(chars); 109 var sb = new StringBuilder(chars.Length); 110 // we want to have the up-case characters last 111 for (int i = chars.Length - 1; i >= 0; i--) { 112 if (chars[i] != '*') sb.Append(chars[i]); 113 } 114 canonicalTerm = sb.ToString(); 115 canonicalTermDictionary.Add(term, canonicalTerm); 116 } 117 return canonicalTerm; 91 118 } 92 119 } -
branches/HeuristicLab.Problems.GrammaticalOptimization/Main/Program.cs
r11795 r11799 24 24 CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture; 25 25 26 //RunDemo();27 RunGridTest();26 RunDemo(); 27 //RunGridTest(); 28 28 } 29 29 … … 32 32 //var globalRandom = new Random(31415); 33 33 var localRandSeed = 31415; 34 var reps = 5;35 36 var polic ies = new Func<IBanditPolicy>[]34 var reps = 10; 35 36 var policyFactories = new Func<IBanditPolicy>[] 37 37 { 38 38 () => new RandomPolicy(), … … 72 72 () => new ChernoffIntervalEstimationPolicy( 0.1), 73 73 () => new ChernoffIntervalEstimationPolicy( 0.2), 74 () => new ThresholdAscentPolicy(5, 0.01), 75 () => new ThresholdAscentPolicy(5, 0.05), 76 () => new ThresholdAscentPolicy(5, 0.1), 77 () => new ThresholdAscentPolicy(5, 0.2), 74 78 () => new ThresholdAscentPolicy(10, 0.01), 75 79 () => new ThresholdAscentPolicy(10, 0.05), 76 80 () => new ThresholdAscentPolicy(10, 0.1), 77 81 () => new ThresholdAscentPolicy(10, 0.2), 82 () => new ThresholdAscentPolicy(50, 0.01), 83 () => new ThresholdAscentPolicy(50, 0.05), 84 () => new ThresholdAscentPolicy(50, 0.1), 85 () => new ThresholdAscentPolicy(50, 0.2), 78 86 () => new ThresholdAscentPolicy(100, 0.01), 79 87 () => new ThresholdAscentPolicy(100, 0.05), 80 88 () => new ThresholdAscentPolicy(100, 0.1), 81 89 () => new ThresholdAscentPolicy(100, 0.2), 82 () => new ThresholdAscentPolicy(100, 0.01), 83 () => new ThresholdAscentPolicy(100, 0.05), 84 () => new ThresholdAscentPolicy(100, 0.1), 85 () => new ThresholdAscentPolicy(100, 0.2), 86 //() => new ThresholdAscentPolicy(1000, 0.01), 87 //() => new ThresholdAscentPolicy(1000, 0.05), 88 //() => new ThresholdAscentPolicy(1000, 0.1), 89 //() => new ThresholdAscentPolicy(1000, 0.2), 90 () => new ThresholdAscentPolicy(500, 0.01), 91 () => new ThresholdAscentPolicy(500, 0.05), 92 () => new ThresholdAscentPolicy(500, 0.1), 93 () => new ThresholdAscentPolicy(500, 0.2), 90 94 //() => new ThresholdAscentPolicy(5000, 0.01), 91 95 //() => new ThresholdAscentPolicy(10000, 0.01), 92 96 }; 93 97 94 foreach (var problem in new Tuple<IProblem, int>[] 95 { 96 Tuple.Create((IProblem)new SantaFeAntProblem(), 17), 97 Tuple.Create((IProblem)new SymbolicRegressionPoly10Problem(), 23), 98 }) 99 foreach (var useCanonical in new bool[] { true, false }) 100 foreach (var randomTries in new int[] { 0, /*1, 10, /* 5, 100 /*, 500, 1000 */}) { 101 foreach (var policy in policies) { 98 var instanceFactories = new Func<Random, Tuple<IProblem, int>>[] 99 { 100 (rand) => Tuple.Create((IProblem)new SantaFeAntProblem(), 17), 101 (rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:false ), 15), 102 (rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:true ), 15), 103 (rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:false), 15), 104 (rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:true), 15), 105 (rand) => Tuple.Create((IProblem)new SymbolicRegressionPoly10Problem(), 23) 106 }; 107 108 foreach (var instanceFactory in instanceFactories) { 109 foreach (var useCanonical in new bool[] { true, false }) { 110 foreach (var randomTries in new int[] { 0, 1, 10, /* 5, 100 /*, 500, 1000 */}) { 111 foreach (var policyFactory in policyFactories) { 102 112 var myRandomTries = randomTries; 103 113 var localRand = new Random(localRandSeed); 104 114 var options = new ParallelOptions(); 105 options.MaxDegreeOfParallelism = 1;115 options.MaxDegreeOfParallelism = 4; 106 116 Parallel.For(0, reps, options, (i) => { 107 //var t = Task.Run(() => {108 117 Random myLocalRand; 109 118 lock (localRand) 110 119 myLocalRand = new Random(localRand.Next()); 111 112 //for (int i = 0; i < reps; i++) {113 120 114 121 int iterations = 0; … … 121 128 //var problem = new RoyalPairProblem(); 122 129 //var problem = new EvenParityProblem(); 123 // var alg = new MctsSampler(problem.Item1, problem.Item2, myLocalRand, myRandomTries, policy()); // TODO: Make sure we generate the same random numbers for each 124 var alg = new SequentialSearch(problem.Item1, problem.Item2, myLocalRand, myRandomTries, new GenericGrammarPolicy(problem.Item1, policy(), useCanonical)); 130 // var alg = new MctsSampler(problem.Item1, problem.Item2, myLocalRand, myRandomTries, policy()); 131 var instance = instanceFactory(myLocalRand); 132 var problem = instance.Item1; 133 var maxLen = instance.Item2; 134 var alg = new SequentialSearch(problem, maxLen, myLocalRand, myRandomTries, 135 new GenericGrammarPolicy(problem, policyFactory(), useCanonical)); 125 136 //var alg = new ExhaustiveBreadthFirstSearch(problem, 25); 126 137 //var alg = new AlternativesContextSampler(problem, 25); … … 129 140 iterations++; 130 141 globalStatistics.AddSentence(sentence, quality); 131 if (iterations % 1000 == 0) {132 Console.WriteLine("{0, 5} {1,25} {2} {3}", myRandomTries, policy(), useCanonical, globalStatistics);142 if (iterations % 10000 == 0) { 143 Console.WriteLine("{0,3} {1,5} \"{2,25}\" {3} {4}", i, myRandomTries, policyFactory(), useCanonical, globalStatistics); 133 144 } 134 145 }; 135 146 alg.FoundNewBestSolution += (sentence, quality) => { 136 Console.WriteLine("{0,5} {1,25} {2} {3}", myRandomTries, policy(), useCanonical, globalStatistics); 147 //Console.WriteLine("{0,5} {1,25} {2} {3}", 148 // myRandomTries, policyFactory(), useCanonical, 149 // globalStatistics); 137 150 }; 138 151 139 140 152 alg.Run(maxIterations); 141 142 //Console.WriteLine("{0,5} {1} {2}", randomTries, policyFactory(1), globalStatistics);143 //}144 //});145 //tasks.Add(t);146 153 }); 147 154 } 148 155 } 149 //Task.WaitAll(tasks.ToArray()); 156 } 157 } 150 158 } 151 159 152 160 private static void RunDemo() { 153 // TODO: clone problem for parallel grid test154 161 // TODO: move problem instances into a separate folder 155 // TODO: improve performance of SequentialSearch (memory allocations related to sequences)156 162 // TODO: implement bridge to HL-GP 157 163 // TODO: unify MCTS, TD and ContextMCTS Solvers (stateInfos) … … 183 189 var random = new Random(); 184 190 191 192 var problem = new RoyalSequenceProblem(random, 10, 30, 2, 1, 0); 185 193 //var phraseLen = 3; 186 194 //var numPhrases = 5; 187 195 //var problem = new RoyalPhraseSequenceProblem(random, 15, numPhrases, phraseLen: phraseLen, numCorrectPhrases: 1, correctReward: 1, incorrectReward: 0.0, phrasesAsSets: true); 188 196 189 // var phraseLen = 2;197 // var phraseLen = 3; 190 198 // var numPhrases = 5; 191 // var problem = new FindPhrasesProblem(random, 1 5, numPhrases, phraseLen, numOptimalPhrases: numPhrases, numDecoyPhrases: 0, correctReward: 1.0, decoyReward: 0.0, phrasesAsSets: true);199 // var problem = new FindPhrasesProblem(random, 10, numPhrases, phraseLen, numOptimalPhrases: numPhrases, numDecoyPhrases: 200, correctReward: 1.0, decoyReward: 0.5, phrasesAsSets: true); 192 200 193 201 // good results for symb-reg … … 197 205 // - GenericThompsonSamplingPolicy("") 198 206 // - UCTPolicy(0.10) (5 of 5 runs, 35000 iters avg.) 199 207 200 208 // good results for artificial ant: 201 209 // prev results: … … 203 211 // - GaussianModelWithUnknownVariance (and Q= 0.99-quantil) also works well for Ant 204 212 // 2015 01 19: grid test with canonical states (non-canonical slightly worse) 205 // - Threshold Ascent (best 100, 0.01; all variants relatively good 206 207 //var problem = new SymbolicRegressionPoly10Problem(); 208 209 var problem = new SantaFeAntProblem(); 213 // - Threshold Ascent (best 100, 0.01; all variants relatively good) 214 // - Policies where the variance has a large weight compared to the mean? (Gaussian(compatible), Gaussian with fixed variance, UCT with large c, alle TA) 215 216 //var problem = new SymbolicRegressionPoly10Problem(); 217 218 //var problem = new SantaFeAntProblem(); 210 219 //var problem = new SymbolicRegressionProblem("Tower"); 211 220 //var problem = new PalindromeProblem(); … … 216 225 //var alg = new MctsSampler(problem, 23, random, 0, new BoltzmannExplorationPolicy(100)); 217 226 //var alg = new MctsSampler(problem, 23, random, 0, new EpsGreedyPolicy(0.1)); 218 var alg = new SequentialSearch(problem, 17, random, 0,219 new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new BoltzmannExplorationPolicy(10), true));227 var alg = new SequentialSearch(problem, 30, random, 0, 228 new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new EpsGreedyPolicy(0.1), true)); 220 229 //var alg = new MctsQLearningSampler(problem, sentenceLen, random, 0, null); 221 230 //var alg = new MctsQLearningSampler(problem, 30, random, 0, new EpsGreedyPolicy(0.2)); … … 236 245 iterations++; 237 246 globalStatistics.AddSentence(sentence, quality); 238 if (iterations % 100 == 0) {247 if (iterations % 1000 == 0) { 239 248 if (iterations % 1000 == 0) Console.Clear(); 240 249 Console.SetCursorPosition(0, 0);
Note: See TracChangeset
for help on using the changeset viewer.