[6240] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6240] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[14345] | 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[16565] | 28 | using HEAL.Attic;
|
---|
[6240] | 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[14345] | 30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
[6240] | 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | /// <summary>
|
---|
[6241] | 34 | /// Represents a random forest model for regression and classification
|
---|
[6240] | 35 | /// </summary>
|
---|
[16565] | 36 | [StorableType("A4F688CD-1F42-4103-8449-7DE52AEF6C69")]
|
---|
[6241] | 37 | [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
|
---|
[13941] | 38 | public sealed class RandomForestModel : ClassificationModel, IRandomForestModel {
|
---|
[10963] | 39 | // not persisted
|
---|
[6240] | 40 | private alglib.decisionforest randomForest;
|
---|
[10963] | 41 | private alglib.decisionforest RandomForest {
|
---|
| 42 | get {
|
---|
| 43 | // recalculate lazily
|
---|
| 44 | if (randomForest.innerobj.trees == null || randomForest.innerobj.trees.Length == 0) RecalculateModel();
|
---|
| 45 | return randomForest;
|
---|
[6240] | 46 | }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[13941] | 49 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[13921] | 50 | get { return originalTrainingData.AllowedInputVariables; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
[14345] | 53 | public int NumberOfTrees {
|
---|
| 54 | get { return nTrees; }
|
---|
| 55 | }
|
---|
[13921] | 56 |
|
---|
[10963] | 57 | // instead of storing the data of the model itself
|
---|
| 58 | // we instead only store data necessary to recalculate the same model lazily on demand
|
---|
[6240] | 59 | [Storable]
|
---|
[10963] | 60 | private int seed;
|
---|
[6240] | 61 | [Storable]
|
---|
[10963] | 62 | private IDataAnalysisProblemData originalTrainingData;
|
---|
[6241] | 63 | [Storable]
|
---|
| 64 | private double[] classValues;
|
---|
[10963] | 65 | [Storable]
|
---|
| 66 | private int nTrees;
|
---|
| 67 | [Storable]
|
---|
| 68 | private double r;
|
---|
| 69 | [Storable]
|
---|
| 70 | private double m;
|
---|
| 71 |
|
---|
[6240] | 72 | [StorableConstructor]
|
---|
[16565] | 73 | private RandomForestModel(StorableConstructorFlag _) : base(_) {
|
---|
[10963] | 74 | // for backwards compatibility (loading old solutions)
|
---|
| 75 | randomForest = new alglib.decisionforest();
|
---|
[6240] | 76 | }
|
---|
[6241] | 77 | private RandomForestModel(RandomForestModel original, Cloner cloner)
|
---|
[6240] | 78 | : base(original, cloner) {
|
---|
| 79 | randomForest = new alglib.decisionforest();
|
---|
| 80 | randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
|
---|
| 81 | randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
|
---|
| 82 | randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
|
---|
| 83 | randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
|
---|
[10963] | 84 | // we assume that the trees array (double[]) is immutable in alglib
|
---|
| 85 | randomForest.innerobj.trees = original.randomForest.innerobj.trees;
|
---|
[11315] | 86 |
|
---|
[10963] | 87 | // allowedInputVariables is immutable so we don't need to clone
|
---|
| 88 | allowedInputVariables = original.allowedInputVariables;
|
---|
| 89 |
|
---|
| 90 | // clone data which is necessary to rebuild the model
|
---|
| 91 | this.seed = original.seed;
|
---|
| 92 | this.originalTrainingData = cloner.Clone(original.originalTrainingData);
|
---|
| 93 | // classvalues is immutable so we don't need to clone
|
---|
| 94 | this.classValues = original.classValues;
|
---|
| 95 | this.nTrees = original.nTrees;
|
---|
| 96 | this.r = original.r;
|
---|
| 97 | this.m = original.m;
|
---|
[6240] | 98 | }
|
---|
[10963] | 99 |
|
---|
| 100 | // random forest models can only be created through the static factory methods CreateRegressionModel and CreateClassificationModel
|
---|
[13941] | 101 | private RandomForestModel(string targetVariable, alglib.decisionforest randomForest,
|
---|
[10963] | 102 | int seed, IDataAnalysisProblemData originalTrainingData,
|
---|
| 103 | int nTrees, double r, double m, double[] classValues = null)
|
---|
[13941] | 104 | : base(targetVariable) {
|
---|
[6240] | 105 | this.name = ItemName;
|
---|
| 106 | this.description = ItemDescription;
|
---|
[10963] | 107 | // the model itself
|
---|
[6240] | 108 | this.randomForest = randomForest;
|
---|
[10963] | 109 | // data which is necessary for recalculation of the model
|
---|
| 110 | this.seed = seed;
|
---|
| 111 | this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
|
---|
| 112 | this.classValues = classValues;
|
---|
| 113 | this.nTrees = nTrees;
|
---|
| 114 | this.r = r;
|
---|
| 115 | this.m = m;
|
---|
[6240] | 116 | }
|
---|
| 117 |
|
---|
| 118 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6241] | 119 | return new RandomForestModel(this, cloner);
|
---|
[6240] | 120 | }
|
---|
| 121 |
|
---|
[10963] | 122 | private void RecalculateModel() {
|
---|
| 123 | double rmsError, oobRmsError, relClassError, oobRelClassError;
|
---|
| 124 | var regressionProblemData = originalTrainingData as IRegressionProblemData;
|
---|
| 125 | var classificationProblemData = originalTrainingData as IClassificationProblemData;
|
---|
| 126 | if (regressionProblemData != null) {
|
---|
| 127 | var model = CreateRegressionModel(regressionProblemData,
|
---|
| 128 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 129 | out relClassError, out oobRelClassError);
|
---|
| 130 | randomForest = model.randomForest;
|
---|
| 131 | } else if (classificationProblemData != null) {
|
---|
| 132 | var model = CreateClassificationModel(classificationProblemData,
|
---|
| 133 | nTrees, r, m, seed, out rmsError, out oobRmsError,
|
---|
| 134 | out relClassError, out oobRelClassError);
|
---|
| 135 | randomForest = model.randomForest;
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 |
|
---|
[12509] | 139 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14843] | 140 | double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
|
---|
[10963] | 141 | AssertInputMatrix(inputData);
|
---|
[6240] | 142 |
|
---|
| 143 | int n = inputData.GetLength(0);
|
---|
| 144 | int columns = inputData.GetLength(1);
|
---|
| 145 | double[] x = new double[columns];
|
---|
| 146 | double[] y = new double[1];
|
---|
| 147 |
|
---|
| 148 | for (int row = 0; row < n; row++) {
|
---|
| 149 | for (int column = 0; column < columns; column++) {
|
---|
| 150 | x[column] = inputData[row, column];
|
---|
| 151 | }
|
---|
[10963] | 152 | alglib.dfprocess(RandomForest, x, ref y);
|
---|
[6240] | 153 | yield return y[0];
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
[14107] | 157 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14843] | 158 | double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
|
---|
[14107] | 159 | AssertInputMatrix(inputData);
|
---|
| 160 |
|
---|
| 161 | int n = inputData.GetLength(0);
|
---|
| 162 | int columns = inputData.GetLength(1);
|
---|
| 163 | double[] x = new double[columns];
|
---|
[14230] | 164 | double[] ys = new double[this.RandomForest.innerobj.ntrees];
|
---|
[14107] | 165 |
|
---|
| 166 | for (int row = 0; row < n; row++) {
|
---|
| 167 | for (int column = 0; column < columns; column++) {
|
---|
| 168 | x[column] = inputData[row, column];
|
---|
| 169 | }
|
---|
| 170 | alglib.dforest.dfprocessraw(RandomForest.innerobj, x, ref ys);
|
---|
| 171 | yield return ys.VariancePop();
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
[13941] | 175 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14843] | 176 | double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
|
---|
[10963] | 177 | AssertInputMatrix(inputData);
|
---|
[6241] | 178 |
|
---|
| 179 | int n = inputData.GetLength(0);
|
---|
| 180 | int columns = inputData.GetLength(1);
|
---|
| 181 | double[] x = new double[columns];
|
---|
[10963] | 182 | double[] y = new double[RandomForest.innerobj.nclasses];
|
---|
[6241] | 183 |
|
---|
| 184 | for (int row = 0; row < n; row++) {
|
---|
| 185 | for (int column = 0; column < columns; column++) {
|
---|
| 186 | x[column] = inputData[row, column];
|
---|
| 187 | }
|
---|
| 188 | alglib.dfprocess(randomForest, x, ref y);
|
---|
| 189 | // find class for with the largest probability value
|
---|
| 190 | int maxProbClassIndex = 0;
|
---|
| 191 | double maxProb = y[0];
|
---|
| 192 | for (int i = 1; i < y.Length; i++) {
|
---|
| 193 | if (maxProb < y[i]) {
|
---|
| 194 | maxProb = y[i];
|
---|
| 195 | maxProbClassIndex = i;
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 | yield return classValues[maxProbClassIndex];
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 |
|
---|
[14345] | 202 | public ISymbolicExpressionTree ExtractTree(int treeIdx) {
|
---|
[14368] | 203 | var rf = RandomForest;
|
---|
[14345] | 204 | // hoping that the internal representation of alglib is stable
|
---|
[13941] | 205 |
|
---|
[14345] | 206 | // TREE FORMAT
|
---|
| 207 | // W[Offs] - size of sub-array (for the tree)
|
---|
| 208 | // node info:
|
---|
| 209 | // W[K+0] - variable number (-1 for leaf mode)
|
---|
| 210 | // W[K+1] - threshold (class/value for leaf node)
|
---|
| 211 | // W[K+2] - ">=" branch index (absent for leaf node)
|
---|
| 212 |
|
---|
| 213 | // skip irrelevant trees
|
---|
| 214 | int offset = 0;
|
---|
| 215 | for (int i = 0; i < treeIdx - 1; i++) {
|
---|
[14368] | 216 | offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
|
---|
[14345] | 217 | }
|
---|
| 218 |
|
---|
| 219 | var constSy = new Constant();
|
---|
| 220 | var varCondSy = new VariableCondition() { IgnoreSlope = true };
|
---|
| 221 |
|
---|
[14368] | 222 | var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
|
---|
[14345] | 223 |
|
---|
| 224 | var startNode = new StartSymbol().CreateTreeNode();
|
---|
| 225 | startNode.AddSubtree(node);
|
---|
| 226 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
| 227 | root.AddSubtree(startNode);
|
---|
| 228 | return new SymbolicExpressionTree(root);
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
|
---|
| 232 |
|
---|
| 233 | // alglib source for evaluation of one tree (dfprocessinternal)
|
---|
| 234 | // offs = 0
|
---|
| 235 | //
|
---|
| 236 | // Set pointer to the root
|
---|
| 237 | //
|
---|
| 238 | // k = offs + 1;
|
---|
| 239 | //
|
---|
| 240 | // //
|
---|
| 241 | // // Navigate through the tree
|
---|
| 242 | // //
|
---|
| 243 | // while (true) {
|
---|
| 244 | // if ((double)(df.trees[k]) == (double)(-1)) {
|
---|
| 245 | // if (df.nclasses == 1) {
|
---|
| 246 | // y[0] = y[0] + df.trees[k + 1];
|
---|
| 247 | // } else {
|
---|
| 248 | // idx = (int)Math.Round(df.trees[k + 1]);
|
---|
| 249 | // y[idx] = y[idx] + 1;
|
---|
| 250 | // }
|
---|
| 251 | // break;
|
---|
| 252 | // }
|
---|
| 253 | // if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
|
---|
| 254 | // k = k + innernodewidth;
|
---|
| 255 | // } else {
|
---|
| 256 | // k = offs + (int)Math.Round(df.trees[k + 2]);
|
---|
| 257 | // }
|
---|
| 258 | // }
|
---|
| 259 |
|
---|
| 260 | if ((double)(trees[k]) == (double)(-1)) {
|
---|
| 261 | var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
|
---|
| 262 | constNode.Value = trees[k + 1];
|
---|
| 263 | return constNode;
|
---|
| 264 | } else {
|
---|
| 265 | var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
|
---|
| 266 | condNode.VariableName = AllowedInputVariables[(int)Math.Round(trees[k])];
|
---|
| 267 | condNode.Threshold = trees[k + 1];
|
---|
| 268 | condNode.Slope = double.PositiveInfinity;
|
---|
| 269 |
|
---|
| 270 | var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
|
---|
| 271 | var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
|
---|
| 272 |
|
---|
| 273 | condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
|
---|
| 274 | condNode.AddSubtree(right);
|
---|
| 275 | return condNode;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 |
|
---|
[13941] | 280 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 281 | return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 282 | }
|
---|
[13941] | 283 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 284 | return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6603] | 285 | }
|
---|
| 286 |
|
---|
[16243] | 287 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
| 288 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
| 292 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
| 293 |
|
---|
| 294 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
| 295 | if (regressionProblemData != null)
|
---|
| 296 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
| 297 |
|
---|
| 298 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 299 | if (classificationProblemData != null)
|
---|
| 300 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
| 301 |
|
---|
[16763] | 302 | throw new ArgumentException("The problem data is not compatible with this random forest. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
[16243] | 303 | }
|
---|
| 304 |
|
---|
[10963] | 305 | public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed,
|
---|
[11338] | 306 | out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
|
---|
[15464] | 307 | return CreateRegressionModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
|
---|
| 308 | rmsError: out rmsError, outOfBagRmsError: out outOfBagRmsError, avgRelError: out avgRelError, outOfBagAvgRelError: out outOfBagAvgRelError);
|
---|
[11315] | 309 | }
|
---|
[10963] | 310 |
|
---|
[11343] | 311 | public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
|
---|
| 312 | out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
|
---|
[10963] | 313 | var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
|
---|
[14843] | 314 | double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
|
---|
[10963] | 315 |
|
---|
| 316 | alglib.dfreport rep;
|
---|
| 317 | var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, 1, out rep);
|
---|
| 318 |
|
---|
| 319 | rmsError = rep.rmserror;
|
---|
[15464] | 320 | outOfBagRmsError = rep.oobrmserror;
|
---|
[10963] | 321 | avgRelError = rep.avgrelerror;
|
---|
| 322 | outOfBagAvgRelError = rep.oobavgrelerror;
|
---|
| 323 |
|
---|
[13941] | 324 | return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m);
|
---|
[6240] | 325 | }
|
---|
| 326 |
|
---|
[10963] | 327 | public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed,
|
---|
| 328 | out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
|
---|
[15783] | 329 | return CreateClassificationModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
|
---|
[15464] | 330 | out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError);
|
---|
[11338] | 331 | }
|
---|
[10963] | 332 |
|
---|
[11343] | 333 | public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
|
---|
| 334 | out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
|
---|
[11338] | 335 |
|
---|
[10963] | 336 | var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
|
---|
[14843] | 337 | double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
|
---|
[10963] | 338 |
|
---|
| 339 | var classValues = problemData.ClassValues.ToArray();
|
---|
| 340 | int nClasses = classValues.Length;
|
---|
| 341 |
|
---|
| 342 | // map original class values to values [0..nClasses-1]
|
---|
| 343 | var classIndices = new Dictionary<double, double>();
|
---|
| 344 | for (int i = 0; i < nClasses; i++) {
|
---|
| 345 | classIndices[classValues[i]] = i;
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | int nRows = inputMatrix.GetLength(0);
|
---|
| 349 | int nColumns = inputMatrix.GetLength(1);
|
---|
| 350 | for (int row = 0; row < nRows; row++) {
|
---|
| 351 | inputMatrix[row, nColumns - 1] = classIndices[inputMatrix[row, nColumns - 1]];
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | alglib.dfreport rep;
|
---|
| 355 | var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, nClasses, out rep);
|
---|
| 356 |
|
---|
| 357 | rmsError = rep.rmserror;
|
---|
| 358 | outOfBagRmsError = rep.oobrmserror;
|
---|
| 359 | relClassificationError = rep.relclserror;
|
---|
| 360 | outOfBagRelClassificationError = rep.oobrelclserror;
|
---|
| 361 |
|
---|
[13941] | 362 | return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m, classValues);
|
---|
[10963] | 363 | }
|
---|
| 364 |
|
---|
| 365 | private static alglib.decisionforest CreateRandomForestModel(int seed, double[,] inputMatrix, int nTrees, double r, double m, int nClasses, out alglib.dfreport rep) {
|
---|
| 366 | AssertParameters(r, m);
|
---|
| 367 | AssertInputMatrix(inputMatrix);
|
---|
| 368 |
|
---|
| 369 | int info = 0;
|
---|
| 370 | alglib.math.rndobject = new System.Random(seed);
|
---|
| 371 | var dForest = new alglib.decisionforest();
|
---|
| 372 | rep = new alglib.dfreport();
|
---|
| 373 | int nRows = inputMatrix.GetLength(0);
|
---|
| 374 | int nColumns = inputMatrix.GetLength(1);
|
---|
| 375 | int sampleSize = Math.Max((int)Math.Round(r * nRows), 1);
|
---|
| 376 | int nFeatures = Math.Max((int)Math.Round(m * (nColumns - 1)), 1);
|
---|
| 377 |
|
---|
| 378 | alglib.dforest.dfbuildinternal(inputMatrix, nRows, nColumns - 1, nClasses, nTrees, sampleSize, nFeatures, alglib.dforest.dfusestrongsplits + alglib.dforest.dfuseevs, ref info, dForest.innerobj, rep.innerobj);
|
---|
| 379 | if (info != 1) throw new ArgumentException("Error in calculation of random forest model");
|
---|
| 380 | return dForest;
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | private static void AssertParameters(double r, double m) {
|
---|
| 384 | if (r <= 0 || r > 1) throw new ArgumentException("The R parameter for random forest modeling must be between 0 and 1.");
|
---|
| 385 | if (m <= 0 || m > 1) throw new ArgumentException("The M parameter for random forest modeling must be between 0 and 1.");
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | private static void AssertInputMatrix(double[,] inputMatrix) {
|
---|
[15786] | 389 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
[10963] | 390 | throw new NotSupportedException("Random forest modeling does not support NaN or infinity values in the input dataset.");
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | #region persistence for backwards compatibility
|
---|
| 394 | // when the originalTrainingData is null this means the model was loaded from an old file
|
---|
| 395 | // therefore, we cannot use the new persistence mechanism because the original data is not available anymore
|
---|
| 396 | // in such cases we still store the compete model
|
---|
| 397 | private bool IsCompatibilityLoaded { get { return originalTrainingData == null; } }
|
---|
| 398 |
|
---|
| 399 | private string[] allowedInputVariables;
|
---|
| 400 | [Storable(Name = "allowedInputVariables")]
|
---|
| 401 | private string[] AllowedInputVariables {
|
---|
| 402 | get {
|
---|
| 403 | if (IsCompatibilityLoaded) return allowedInputVariables;
|
---|
| 404 | else return originalTrainingData.AllowedInputVariables.ToArray();
|
---|
| 405 | }
|
---|
| 406 | set { allowedInputVariables = value; }
|
---|
| 407 | }
|
---|
[6240] | 408 | [Storable]
|
---|
| 409 | private int RandomForestBufSize {
|
---|
| 410 | get {
|
---|
[10963] | 411 | if (IsCompatibilityLoaded) return randomForest.innerobj.bufsize;
|
---|
| 412 | else return 0;
|
---|
[6240] | 413 | }
|
---|
| 414 | set {
|
---|
| 415 | randomForest.innerobj.bufsize = value;
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | [Storable]
|
---|
| 419 | private int RandomForestNClasses {
|
---|
| 420 | get {
|
---|
[10963] | 421 | if (IsCompatibilityLoaded) return randomForest.innerobj.nclasses;
|
---|
| 422 | else return 0;
|
---|
[6240] | 423 | }
|
---|
| 424 | set {
|
---|
| 425 | randomForest.innerobj.nclasses = value;
|
---|
| 426 | }
|
---|
| 427 | }
|
---|
| 428 | [Storable]
|
---|
| 429 | private int RandomForestNTrees {
|
---|
| 430 | get {
|
---|
[10963] | 431 | if (IsCompatibilityLoaded) return randomForest.innerobj.ntrees;
|
---|
| 432 | else return 0;
|
---|
[6240] | 433 | }
|
---|
| 434 | set {
|
---|
| 435 | randomForest.innerobj.ntrees = value;
|
---|
| 436 | }
|
---|
| 437 | }
|
---|
| 438 | [Storable]
|
---|
| 439 | private int RandomForestNVars {
|
---|
| 440 | get {
|
---|
[10963] | 441 | if (IsCompatibilityLoaded) return randomForest.innerobj.nvars;
|
---|
| 442 | else return 0;
|
---|
[6240] | 443 | }
|
---|
| 444 | set {
|
---|
| 445 | randomForest.innerobj.nvars = value;
|
---|
| 446 | }
|
---|
| 447 | }
|
---|
| 448 | [Storable]
|
---|
| 449 | private double[] RandomForestTrees {
|
---|
| 450 | get {
|
---|
[10963] | 451 | if (IsCompatibilityLoaded) return randomForest.innerobj.trees;
|
---|
| 452 | else return new double[] { };
|
---|
[6240] | 453 | }
|
---|
| 454 | set {
|
---|
| 455 | randomForest.innerobj.trees = value;
|
---|
| 456 | }
|
---|
| 457 | }
|
---|
| 458 | #endregion
|
---|
| 459 | }
|
---|
| 460 | }
|
---|