Changeset 11338 for trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs
- Timestamp:
- 09/03/14 15:15:41 (8 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs
r11315 r11338 188 188 189 189 public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed, 190 out double rmsError, out double avgRelError, out double outOfBagAvgRelError, out double outOfBagRmsError) {190 out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) { 191 191 return CreateRegressionModel(problemData, nTrees, r, m, seed, out rmsError, out avgRelError, out outOfBagAvgRelError, out outOfBagRmsError, problemData.TrainingIndices); 192 192 } 193 193 194 194 public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed, 195 out double rmsError, out double avgRelError, out double outOfBagAvgRelError, out double outOfBagRmsError, IEnumerable<int> trainingIndices) {195 out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError, IEnumerable<int> trainingIndices) { 196 196 var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable }); 197 197 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, problemData.TrainingIndices); … … 212 212 public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed, 213 213 out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) { 214 return CreateClassificationModel(problemData, nTrees, r, m, seed, out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError, problemData.TrainingIndices); 215 } 216 217 public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed, 218 out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError, IEnumerable<int> trainingIndices) { 214 219 215 220 var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable }); 216 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, problemData.TrainingIndices);221 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, trainingIndices); 217 222 218 223 var classValues = problemData.ClassValues.ToArray(); … … 268 273 269 274 private static void AssertInputMatrix(double[,] inputMatrix) { 270 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))275 if (inputMatrix.Cast<double>().Any(x => Double.IsNaN(x) || Double.IsInfinity(x))) 271 276 throw new NotSupportedException("Random forest modeling does not support NaN or infinity values in the input dataset."); 272 277 }
Note: See TracChangeset
for help on using the changeset viewer.