Version 4 (modified by swagner, 5 years ago) (diff) |
---|

# Video Tutorials

Video tutorials show how to use the HeuristicLab environment to complete tasks such as experiment analysis, algorithm prototyping or solving regression problems.

## Basic Tutorials

### Usability and Views

This video demonstrates the basic user interface concepts of HeuristicLab and how to effectively use them.

### How to Execute Algorithms

The video shows how you can parameterize and execute algorithms in HeuristicLab.

### Experiment Design and Analysis

This video shows how to create experiments and batch-runs in HeuristicLab as well as how to analyze the generated results.

## Advanced Tutorials

### How to Create Custom Algorithms

This video shows how algorithms in HeuristicLab can be adapted in the GUI by extending a genetic algorithm to incorporate a crossover probability.

### How to Create User-defined Problems

In this video it is shown how user-defined problems can be used to extend HeuristicLab with new custom optimization problems. As an example a user-defined n-queens problem is created and you can see how to define the problem's parameters and its solution encoding and how to implement a custom evaluation function using a programmable operator.

### How to Use HeuristicLab Hive

Hive is HeuristicLab's distributed computing infrastructure and can be used to execute experiments in a massively parallel and distributed fashion. This video shows how to create an experiment, upload it to Hive for execution and view the results.

### Rapid Prototyping Using the Scripting Environment

<abstract>

## Application-specific Tutorials

### Symbolic Regression with HeuristicLab

This tutorial covers the basic functionality for symbolic regression and for analyzing symbolic regression models in HeuristicLab.

First, we demonstrate how to load data and how to use genetic programming to produce symbolic regression models. After that, all charts and visualizations for symbolic regression models are shown and the functionality for model analysis, simplification, and tuning is explained in detail. At the end of this tutorial we show how symbolic regression models can be exported to MATLAB, LaTeX and Excel.

### Symbolic Classification with HeuristicLab

In this video tutorial the basic steps necessary to perform symbolic classification with HeuristicLab are covered. As exemplary data the mammography dataset from the UCI machine learning repository is chosen and modeled by genetic programming. You can see how the problem and the algorithm are configured and after the algorithm is finished the resulting model is analyzed.