Changeset 9622 for branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Timestamp:
- 06/13/13 11:20:25 (11 years ago)
- Location:
- branches/HeuristicLab.Problems.GaussianProcessTuning
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GaussianProcessTuning
- Property svn:ignore
-
old new 6 6 bin 7 7 x64 8 Release 9 TestResults
-
- Property svn:ignore
-
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcess2dPeriodic.cs
r9214 r9622 83 83 .Concat(new double[] { Math.Log(Math.Sqrt(0.01)) }) 84 84 .ToArray(), 85 n ull);85 new int[] { 0, 1}); 86 86 87 87 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessPolyTen.cs
r9112 r9622 74 74 -5.0 // noise 75 75 }; 76 76 77 77 78 78 var covarianceFunction = new CovarianceSum(); … … 129 129 covarianceFunction.Terms.Add(t5); 130 130 131 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);131 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 10)); 132 132 133 133 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessRegressionDemo.cs
r9338 r9622 48 48 public GaussianProcessRegressionDemo(string name, ICovarianceFunction covarianceFunction, double[] hyp) { 49 49 this.name = name; 50 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, n ull);50 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, new int[] { 0 }); 51 51 } 52 52 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessRegressionInstance.cs
r9124 r9622 48 48 public GaussianProcessRegressionInstance(string name, ICovarianceFunction covarianceFunction, double[] hyp) { 49 49 this.name = name; 50 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);50 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 1)); 51 51 } 52 52 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessRegressionInstance1D.cs
r9212 r9622 49 49 public GaussianProcessRegressionInstance1D(string name, ICovarianceFunction covarianceFunction, double[] hyp) { 50 50 this.name = name; 51 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);51 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 1)); 52 52 } 53 53 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessRegressionInstance2D.cs
r9212 r9622 49 49 public GaussianProcessRegressionInstance2D(string name, ICovarianceFunction covarianceFunction, double[] hyp) { 50 50 this.name = name; 51 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);51 cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 2)); 52 52 } 53 53 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso.cs
r9112 r9622 59 59 covarianceFunction.GetParameterizedCovarianceFunction( 60 60 new double[] { Math.Log(0.1), Math.Log(Math.Sqrt(1)), Math.Log(Math.Sqrt(0.01)) }, 61 null);61 Enumerable.Range(0, 1)); 62 62 63 63 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso1.cs
r9112 r9622 66 66 covFun.Terms.Add(new CovarianceNoise()); 67 67 68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null);68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 2)); 69 69 var mt = new MersenneTwister(); 70 70 var target = Util.SampleGaussianProcess(mt, cov, data); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso2.cs
r9112 r9622 70 70 covFun.Terms.Add(m2); 71 71 covFun.Terms.Add(new CovarianceNoise()); 72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null);72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 4)); 73 73 74 74 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso3.cs
r9112 r9622 75 75 covFun.Terms.Add(m3); 76 76 covFun.Terms.Add(new CovarianceNoise()); 77 var cov = covFun.GetParameterizedCovarianceFunction(hyp, null);77 var cov = covFun.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 6)); 78 78 79 79 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso4.cs
r9112 r9622 66 66 covFun.Terms.Add(new CovarianceNoise()); 67 67 68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, n ull);68 var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0, 6, 8 }); 69 69 var mt = new MersenneTwister(); 70 70 var target = Util.SampleGaussianProcess(mt, cov, data); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso5.cs
r9112 r9622 69 69 covFun.Terms.Add(m2); 70 70 covFun.Terms.Add(new CovarianceNoise()); 71 var cov = covFun.GetParameterizedCovarianceFunction(hyp, n ull);71 var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0, 2, 5, 6, 8, 9 }); 72 72 73 73 var mt = new MersenneTwister(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIso6.cs
r9112 r9622 80 80 covFun.Terms.Add(m4); 81 81 covFun.Terms.Add(new CovarianceNoise()); 82 var cov = covFun.GetParameterizedCovarianceFunction(hyp, n ull);82 var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0, 1, 2, 3, 4, 5, 6, 8 }); 83 83 84 84 -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIsoDependentNoise.cs
r9112 r9622 66 66 Math.Log(Math.Sqrt(0.01)) // noise 67 67 }; 68 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, n ull);68 var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, new int[] { 0 }); 69 69 70 70 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSumOfRQIso.cs
r9124 r9622 71 71 covFun.Terms.Add(new CovarianceNoise()); 72 72 73 var cov = covFun.GetParameterizedCovarianceFunction(hyp, n ull);73 var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0 }); 74 74 var mt = new MersenneTwister(); 75 75 var target = Util.SampleGaussianProcess(mt, cov, data); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSumOfSEIso.cs
r9124 r9622 70 70 covFun.Terms.Add(new CovarianceNoise()); 71 71 72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, n ull);72 var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0 }); 73 73 var mt = new MersenneTwister(); 74 74 var target = Util.SampleGaussianProcess(mt, cov, data);
Note: See TracChangeset
for help on using the changeset viewer.