Changeset 9338 for branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Timestamp:
- 03/31/13 13:17:49 (12 years ago)
- Location:
- branches/HeuristicLab.Problems.GaussianProcessTuning
- Files:
-
- 1 added
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GaussianProcessTuning
- Property svn:ignore
-
old new 4 4 *.testsettings 5 5 *.user 6 bin
-
- Property svn:ignore
-
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/Instances.DataAnalysis.GaussianProcessRegression-3.3.csproj
r9214 r9338 178 178 </ItemGroup> 179 179 <ItemGroup> 180 <Compile Include="GaussianProcessRegressionDemo.cs" /> 180 181 <Compile Include="GaussianProcess2dPeriodic.cs" /> 181 182 <Compile Include="GaussianProcessRegressionInstance1D.cs" /> -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/VariousInstanceProvider.cs
r9214 r9338 135 135 { 136 136 var cov = new CovarianceSum(); 137 cov.Terms.Add(new CovarianceSquaredExponentialIso()); 138 cov.Terms.Add(new CovarianceNoise()); 139 var hyp = new double[] { -2.5, 0, -7 }; 140 descriptorList.Add(new GaussianProcessRegressionDemo("1D: SE Noise", cov, hyp)); 141 } 142 { 143 var cov = new CovarianceSum(); 144 cov.Terms.Add(new CovarianceRationalQuadraticIso()); 145 cov.Terms.Add(new CovarianceNoise()); 146 var hyp = new double[] { -2.5, 0, -1, -7 }; 147 descriptorList.Add(new GaussianProcessRegressionDemo("1D: RQ Noise", cov, hyp)); 148 } 149 { 150 var cov = new CovarianceSum(); 151 var t = new CovarianceMaternIso(); 152 t.DParameter.Value = t.DParameter.ValidValues.First(x => x.Value == 3); 153 cov.Terms.Add(t); 154 cov.Terms.Add(new CovarianceNoise()); 155 var hyp = new double[] { -1.5, 0, -7 }; 156 descriptorList.Add(new GaussianProcessRegressionDemo("1D: Matern3 Noise", cov, hyp)); 157 } 158 { 159 var cov = new CovarianceSum(); 160 var t = new CovariancePeriodic(); 161 t.PeriodParameter.Value = new DoubleValue(0.3); 162 cov.Terms.Add(t); 163 cov.Terms.Add(new CovarianceNoise()); 164 var hyp = new double[] { 0, 0, -7 }; 165 descriptorList.Add(new GaussianProcessRegressionDemo("1D: Periodic Noise", cov, hyp)); 166 } 167 { 168 var cov = new CovarianceSum(); 137 169 cov.Terms.Add(new CovarianceRationalQuadraticIso()); 138 170 cov.Terms.Add(new CovarianceNoise());
Note: See TracChangeset
for help on using the changeset viewer.