- Timestamp:
- 12/19/12 11:16:51 (12 years ago)
- Location:
- branches/RuntimeOptimizer
- Files:
-
- 36 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/RuntimeOptimizer
- Property svn:mergeinfo changed
/trunk/sources merged: 8972-8974,8976,8978-8994,8999-9019,9021-9031,9033-9039,9043,9049,9052,9055-9057,9063,9068,9072,9075-9076
- Property svn:mergeinfo changed
-
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.Instances.DataAnalysis (added) merged: 8999,9007-9008,9013,9021
- Property svn:mergeinfo changed
-
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Classification/CSV/ClassifiactionCSVInstanceProvider.cs
r8885 r9078 91 91 92 92 protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) { 93 int trainingPartEnd = (csvFileParser.Rows * type.Training ) / 100;93 int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; 94 94 List<IList> values = csvFileParser.Values; 95 95 if (type.Shuffle) { … … 97 97 if (type.UniformlyDistributeClasses) { 98 98 values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)), 99 type.Training , out trainingPartEnd);99 type.TrainingPercentage, out trainingPartEnd); 100 100 } 101 101 } -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Clustering/CSV/ClusteringCSVInstanceProvider.cs
r8877 r9078 100 100 // turn of input variables that are constant in the training partition 101 101 var allowedInputVars = new List<string>(); 102 int trainingPartEnd = (csvFileParser.Rows * type.Training ) / 100;102 int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; 103 103 var trainingIndizes = Enumerable.Range(0, trainingPartEnd); 104 104 if (trainingIndizes.Count() >= 2) { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/DataAnalysisImportType.cs
r8598 r9078 23 23 public class DataAnalysisImportType { 24 24 public bool Shuffle { get; set; } 25 public int Training { get; set; }25 public int TrainingPercentage { get; set; } 26 26 } 27 27 } -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/CSV/RegressionCSVInstanceProvider.cs
r8877 r9078 97 97 // turn of input variables that are constant in the training partition 98 98 var allowedInputVars = new List<string>(); 99 int trainingPartEnd = (csvFileParser.Rows * type.Training ) / 100;99 int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; 100 100 trainingPartEnd = trainingPartEnd > 0 ? trainingPartEnd : 1; 101 101 var trainingIndizes = Enumerable.Range(0, trainingPartEnd); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionEleven.cs
r8825 r9078 36 36 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 37 37 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 38 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 39 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 40 + ", but 5000 cases are created"; 38 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 41 39 } 42 40 } … … 46 44 protected override int TrainingPartitionStart { get { return 0; } } 47 45 protected override int TrainingPartitionEnd { get { return 20; } } 48 protected override int TestPartitionStart { get { return 2 500; } }49 protected override int TestPartitionEnd { get { return 2 600; } }46 protected override int TestPartitionStart { get { return 20; } } 47 protected override int TestPartitionEnd { get { return 20 + (601 * 601); } } 50 48 51 49 protected override List<List<double>> GenerateValues() { 52 50 List<List<double>> data = new List<List<double>>(); 51 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-3, 3, 0.01).ToList(); 52 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 53 54 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList(); 55 53 56 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 54 data.Add(ValueGenerator.GenerateUniformDistributedValues(5020, -3, 3).ToList()); 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList()); 58 data[i].AddRange(combinations[i]); 55 59 } 56 60 -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFifteen.cs
r8825 r9078 35 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 + ", but 5000 cases are created"; 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 40 38 } 41 39 } … … 45 43 protected override int TrainingPartitionStart { get { return 0; } } 46 44 protected override int TrainingPartitionEnd { get { return 20; } } 47 protected override int TestPartitionStart { get { return 2 500; } }48 protected override int TestPartitionEnd { get { return 2 600; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 20 + (601 * 601); } } 49 47 50 48 protected override List<List<double>> GenerateValues() { 51 49 List<List<double>> data = new List<List<double>>(); 50 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-3, 3, 0.01).ToList(); 51 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 52 53 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList(); 54 52 55 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList()); 57 data[i].AddRange(combinations[i]); 54 58 } 55 59 … … 59 63 x = data[0][i]; 60 64 y = data[1][i]; 61 results.Add( Math.Pow(x, 3) / 5 + Math.Pow(y, 3) / 2- y - x);65 results.Add(x * x * x / 5.0 + y * y * y / 2.0 - y - x); 62 66 } 63 67 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFourteen.cs
r8825 r9078 35 35 + "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 + ", but 5000 cases are created"; 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 40 38 } 41 39 } … … 45 43 protected override int TrainingPartitionStart { get { return 0; } } 46 44 protected override int TrainingPartitionEnd { get { return 20; } } 47 protected override int TestPartitionStart { get { return 2 500; } }48 protected override int TestPartitionEnd { get { return 2 600; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 20 + (601 * 601); } } 49 47 50 48 protected override List<List<double>> GenerateValues() { 51 49 List<List<double>> data = new List<List<double>>(); 50 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-3, 3, 0.01).ToList(); 51 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 52 53 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList(); 54 52 55 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList()); 57 data[i].AddRange(combinations[i]); 54 58 } 55 59 … … 59 63 x = data[0][i]; 60 64 y = data[1][i]; 61 results.Add(8 / (2 + Math.Pow(x, 2) + Math.Pow(y, 2)));65 results.Add(8.0 / (2.0 + x * x + y * y)); 62 66 } 63 67 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionSeven.cs
r8825 r9078 36 36 + "range(test): x = [1:0.1:100]" + Environment.NewLine 37 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: The problem starts with 1 to avoid log(0) , which is minus infinity!";38 + "Note: The problem starts with 1 to avoid log(0)!"; 39 39 } 40 40 } -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTen.cs
r8900 r9078 44 44 protected override int TrainingPartitionEnd { get { return 100; } } 45 45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 10 301; } }46 protected override int TestPartitionEnd { get { return 100 + (101 * 101); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionThirteen.cs
r8825 r9078 35 35 + "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine 36 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 + ", but 5000 cases are created"; 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 40 38 } 41 39 } … … 45 43 protected override int TrainingPartitionStart { get { return 0; } } 46 44 protected override int TrainingPartitionEnd { get { return 20; } } 47 protected override int TestPartitionStart { get { return 2 500; } }48 protected override int TestPartitionEnd { get { return 2 600; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 20 + (601 * 601); } } 49 47 50 48 protected override List<List<double>> GenerateValues() { 51 49 List<List<double>> data = new List<List<double>>(); 50 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-3, 3, 0.01).ToList(); 51 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 52 53 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList(); 54 52 55 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList()); 57 data[i].AddRange(combinations[i]); 54 58 } 55 59 -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionTwelve.cs
r8825 r9078 31 31 get { 32 32 return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = x^4 - x³ + y² / 2 - y" + Environment.NewLine 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine 38 + "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the interval [-3, 3] (not ca. 360000 as described) " 39 + ", but 5000 cases are created"; 33 + "Authors: Maarten Keijzer" + Environment.NewLine 34 + "Function: f(x, y) = x^4 - x³ + y² / 2 - y" + Environment.NewLine 35 + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine 36 + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine 37 + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)"; 40 38 } 41 39 } … … 45 43 protected override int TrainingPartitionStart { get { return 0; } } 46 44 protected override int TrainingPartitionEnd { get { return 20; } } 47 protected override int TestPartitionStart { get { return 2 500; } }48 protected override int TestPartitionEnd { get { return 2 600; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 20 + (601 * 601); } } 49 47 50 48 protected override List<List<double>> GenerateValues() { 51 49 List<List<double>> data = new List<List<double>>(); 50 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-3, 3, 0.01).ToList(); 51 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 52 53 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList(); 54 52 55 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(20, -3, 3).ToList()); 57 data[i].AddRange(combinations[i]); 54 58 } 55 59 -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionEleven.cs
r8825 r9078 27 27 public class KornsFunctionEleven : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Korns 11 y = 6.87 + (11 * cos(7.23 * X0 * X0 * X0))"; } }29 public override string Name { get { return "Korns 11 y = 6.87 + (11 * cos(7.23 * X0³))"; } } 30 30 public override string Description { 31 31 get { … … 46 46 protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } 47 47 protected override int TrainingPartitionStart { get { return 0; } } 48 protected override int TrainingPartitionEnd { get { return 5000; } }49 protected override int TestPartitionStart { get { return 5000; } }50 protected override int TestPartitionEnd { get { return 10000; } }48 protected override int TrainingPartitionEnd { get { return 10000; } } 49 protected override int TestPartitionStart { get { return 10000; } } 50 protected override int TestPartitionEnd { get { return 20000; } } 51 51 52 52 protected override List<List<double>> GenerateValues() { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionFiveteen.cs
r8900 r9078 54 54 List<List<double>> data = new List<List<double>>(); 55 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 57 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 58 58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionNine.cs
r8900 r9078 56 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 57 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper) 58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 0).ToList()); // note: range is only [-50,0] to prevent NaN values (deviates from gp benchmark paper)58 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 59 59 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 60 60 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionSeven.cs
r8900 r9078 53 53 protected override List<List<double>> GenerateValues() { 54 54 List<List<double>> data = new List<List<double>>(); 55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)55 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 56 56 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); 57 57 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList()); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionEight.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, 0, 4).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, 0, 4).ToList()); 51 51 52 52 double x; -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionEleven.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 500; } }46 protected override int TestPartitionEnd { get { return 10 00; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 1020; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionFive.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; … … 54 54 for (int i = 0; i < data[0].Count; i++) { 55 55 x = data[0][i]; 56 results.Add(Math.Sin( Math.Pow(x, 2)) * Math.Cos(x) - 1);56 results.Add(Math.Sin(x * x) * Math.Cos(x) - 1); 57 57 } 58 58 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionFour.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; … … 54 54 for (int i = 0; i < data[0].Count; i++) { 55 55 x = data[0][i]; 56 results.Add(Math.Pow(x, 6) + Math.Pow(x, 5) + Math.Pow(x, 4) + Math.Pow(x, 3) + Math.Pow(x, 2)+ x);56 results.Add(Math.Pow(x, 6) + Math.Pow(x, 5) + Math.Pow(x, 4) + Math.Pow(x, 3) + x * x + x); 57 57 } 58 58 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionNine.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 500; } }46 protected override int TestPartitionEnd { get { return 10 00; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 1020; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 56 56 x = data[0][i]; 57 57 y = data[1][i]; 58 results.Add(Math.Sin(x) + Math.Sin( Math.Pow(y, 2)));58 results.Add(Math.Sin(x) + Math.Sin(y * y)); 59 59 } 60 60 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionOne.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionSeven.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, 0, 2).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, 0, 2).ToList()); 51 51 52 52 double x; … … 54 54 for (int i = 0; i < data[0].Count; i++) { 55 55 x = data[0][i]; 56 results.Add(Math.Log(x + 1) + Math.Log( Math.Pow(x, 2)+ 1));56 results.Add(Math.Log(x + 1) + Math.Log(x * x + 1)); 57 57 } 58 58 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionSix.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; … … 54 54 for (int i = 0; i < data[0].Count; i++) { 55 55 x = data[0][i]; 56 results.Add(Math.Sin(x) + Math.Sin(x + Math.Pow(x, 2)));56 results.Add(Math.Sin(x) + Math.Sin(x + x*x)); 57 57 } 58 58 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTen.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 500; } }46 protected override int TestPartitionEnd { get { return 10 00; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 1020; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(10 00, 0, 1).ToList());51 data.Add(ValueGenerator.GenerateUniformDistributedValues(10 00, 0, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(1020, 0, 1).ToList()); 51 data.Add(ValueGenerator.GenerateUniformDistributedValues(1020, 0, 1).ToList()); 52 52 53 53 double x, y; -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionThree.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTwelve.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 500; } }46 protected override int TestPartitionEnd { get { return 10 00; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 1020; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(10 00, 0, 1).ToList());51 data.Add(ValueGenerator.GenerateUniformDistributedValues(10 00, 0, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(1020, 0, 1).ToList()); 51 data.Add(ValueGenerator.GenerateUniformDistributedValues(1020, 0, 1).ToList()); 52 52 53 53 double x, y; … … 56 56 x = data[0][i]; 57 57 y = data[1][i]; 58 results.Add(Math.Pow(x, 4) - Math.Pow(x, 3) + Math.Pow(y, 2)/ 2 - y);58 results.Add(Math.Pow(x, 4) - Math.Pow(x, 3) + y * y / 2 - y); 59 59 } 60 60 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTwo.cs
r8825 r9078 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 20; } } 45 protected override int TestPartitionStart { get { return 2 50; } }46 protected override int TestPartitionEnd { get { return 350; } }45 protected override int TestPartitionStart { get { return 20; } } 46 protected override int TestPartitionEnd { get { return 520; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 data.Add(ValueGenerator.GenerateUniformDistributedValues(5 00, -1, 1).ToList());50 data.Add(ValueGenerator.GenerateUniformDistributedValues(520, -1, 1).ToList()); 51 51 52 52 double x; … … 54 54 for (int i = 0; i < data[0].Count; i++) { 55 55 x = data[0][i]; 56 results.Add(Math.Pow(x, 4) + Math.Pow(x, 3) + Math.Pow(x, 2)+ x);56 results.Add(Math.Pow(x, 4) + Math.Pow(x, 3) + x*x + x); 57 57 } 58 58 data.Add(results); -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/KotanchekFunction.cs
r8825 r9078 34 34 + "Function: F1(X1, X2) = exp(-(X1 - 1))² / (1.2 + (X2 -2.5)²" + Environment.NewLine 35 35 + "Training Data: 100 points X1, X2 = Rand(0.3, 4)" + Environment.NewLine 36 + "Test Data: 2026points (X1, X2) = (-0.2:0.1:4.2)" + Environment.NewLine36 + "Test Data: 45*45 points (X1, X2) = (-0.2:0.1:4.2)" + Environment.NewLine 37 37 + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps"; 38 38 } … … 44 44 protected override int TrainingPartitionEnd { get { return 100; } } 45 45 protected override int TestPartitionStart { get { return 100; } } 46 protected override int TestPartitionEnd { get { return 2126; } }46 protected override int TestPartitionEnd { get { return 100 + (45 * 45); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialThreeDimensional.cs
r8825 r9078 34 34 + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine 35 35 + "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine 36 + "Test Data: 2701 points X1, X3 = (-0.05:0.15:2.1), X2 = (0.95:0.1:2.05)" + Environment.NewLine36 + "Test Data: (14*12*14) points X1, X3 = (-0.05:0.15:2.05), X2 = (0.95:0.1:2.05)" + Environment.NewLine 37 37 + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; 38 38 } … … 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 300; } } 45 protected override int TestPartitionStart { get { return 1000; } }46 protected override int TestPartitionEnd { get { return 3 700; } }45 protected override int TestPartitionStart { get { return 300; } } 46 protected override int TestPartitionEnd { get { return 300 + (15*12*15); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 51 int n = 1000;51 int n = 300; 52 52 data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList()); 53 53 data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList()); … … 55 55 56 56 List<List<double>> testData = new List<List<double>>() { 57 ValueGenerator.GenerateSteps(-0.05, 2. 1, 0.15).ToList(),57 ValueGenerator.GenerateSteps(-0.05, 2.05, 0.15).ToList(), 58 58 ValueGenerator.GenerateSteps( 0.95, 2.05, 0.1).ToList(), 59 ValueGenerator.GenerateSteps(-0.05, 2. 1, 0.15).ToList()59 ValueGenerator.GenerateSteps(-0.05, 2.05, 0.15).ToList() 60 60 }; 61 61 -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialTwoDimensional.cs
r8825 r9078 34 34 + "Function: F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)³ - (X2 -3)) / ((X2 - 2)^4 + 10)" + Environment.NewLine 35 35 + "Training Data: 50 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine 36 + "Test Data: 1157points X1, X2 = (-0.25:0.2:6.35)" + Environment.NewLine36 + "Test Data: 34*34 points X1, X2 = (-0.25:0.2:6.35)" + Environment.NewLine 37 37 + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps"; 38 38 } … … 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 50; } } 45 protected override int TestPartitionStart { get { return 1000; } }46 protected override int TestPartitionEnd { get { return 2157; } }45 protected override int TestPartitionStart { get { return 50; } } 46 protected override int TestPartitionEnd { get { return 50 + (34 * 34); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 50 50 51 51 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-0.25, 6.35, 0.2).ToList(); 52 52 53 List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData }; 54 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>(); 53 55 54 var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();55 56 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 56 data.Add(ValueGenerator.GenerateUniformDistributedValues( 1000, 0.05, 6.05).ToList());57 data.Add(ValueGenerator.GenerateUniformDistributedValues(50, 0.05, 6.05).ToList()); 57 58 data[i].AddRange(combinations[i]); 58 59 } -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RippleFunction.cs
r8825 r9078 27 27 public class RippleFunction : ArtificialRegressionDataDescriptor { 28 28 29 public override string Name { get { return "Vladislavleva-7 29 public override string Name { get { return "Vladislavleva-7 F7(X1, X2) = (X1 - 3)(X2 - 3) + 2 * sin((X1 - 4)(X2 - 4))"; } } 30 30 public override string Description { 31 31 get { … … 44 44 protected override int TrainingPartitionEnd { get { return 300; } } 45 45 protected override int TestPartitionStart { get { return 300; } } 46 protected override int TestPartitionEnd { get { return 1300; } }46 protected override int TestPartitionEnd { get { return 300 + 1000; } } 47 47 48 48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 51 data.Add(ValueGenerator.GenerateUniformDistributedValues( TrainingPartitionEnd, 0.05, 6.05).ToList());51 data.Add(ValueGenerator.GenerateUniformDistributedValues(300, 0.05, 6.05).ToList()); 52 52 } 53 53 54 54 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 55 data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues( TrainingPartitionEnd, -0.25, 6.35));55 data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(1000, -0.25, 6.35)); 56 56 } 57 57 -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/SalutowiczFunctionTwoDimensional.cs
r8825 r9078 33 33 + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine 34 34 + "Function: F3(X1, X2) = exp(-X1) * X1³ * cos(X1) * sin(X1) * (cos(X1)sin(X1)² - 1)(X2 - 5)" + Environment.NewLine 35 + "Training Data: 60 1points X1 = (0.05:0.1:10), X2 = (0.05:2:10.05)" + Environment.NewLine36 + "Test Data: 4840points X1 = (-0.5:0.05:10.5), X2 = (-0.5:0.5:10.5)" + Environment.NewLine35 + "Training Data: 600 points X1 = (0.05:0.1:10), X2 = (0.05:2:10.05)" + Environment.NewLine 36 + "Test Data: 221 * 23 points X1 = (-0.5:0.05:10.5), X2 = (-0.5:0.5:10.5)" + Environment.NewLine 37 37 + "Function Set: +, -, *, /, square, e^x, e^-x, sin(x), cos(x), x^eps, x + eps, x + eps"; 38 38 } … … 42 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 protected override int TrainingPartitionEnd { get { return 60 1; } }45 protected override int TestPartitionStart { get { return 60 1; } }46 protected override int TestPartitionEnd { get { return 5441; } }44 protected override int TrainingPartitionEnd { get { return 600; } } 45 protected override int TestPartitionStart { get { return 600; } } 46 protected override int TestPartitionEnd { get { return 600 + (221 * 23); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/SineCosineFunction.cs
r8825 r9078 34 34 + "Function: F6(X1, X2) = 6 * sin(X1) * cos(X2)" + Environment.NewLine 35 35 + "Training Data: 30 points X1, X2 = Rand(0.1, 5.9)" + Environment.NewLine 36 + "Test Data: 961points X1, X2 = (-0.05:0.02:6.05)" + Environment.NewLine36 + "Test Data: 306*306 points X1, X2 = (-0.05:0.02:6.05)" + Environment.NewLine 37 37 + "Function Set: +, -, *, /, square, e^x, e^-x, x^eps, x + eps, x * eps"; 38 38 } … … 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 30; } } 45 protected override int TestPartitionStart { get { return 500; } }46 protected override int TestPartitionEnd { get { return 1461; } }45 protected override int TestPartitionStart { get { return 30; } } 46 protected override int TestPartitionEnd { get { return 30 + (306 * 306); } } 47 47 48 48 protected override List<List<double>> GenerateValues() { … … 53 53 54 54 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 55 data.Add(ValueGenerator.GenerateUniformDistributedValues( 500, 0.1, 5.9).ToList());55 data.Add(ValueGenerator.GenerateUniformDistributedValues(30, 0.1, 5.9).ToList()); 56 56 data[i].AddRange(combinations[i]); 57 57 } -
branches/RuntimeOptimizer/HeuristicLab.Problems.Instances.DataAnalysis/3.3/TimeSeries/CSV/TimeSeriesPrognosisCSVInstanceProvider.cs
r8885 r9078 87 87 // turn of input variables that are constant in the training partition 88 88 var allowedInputVars = new List<string>(); 89 int trainingPartEnd = (csvFileParser.Rows * type.Training ) / 100;89 int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; 90 90 trainingPartEnd = trainingPartEnd > 0 ? trainingPartEnd : 1; 91 91 var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
Note: See TracChangeset
for help on using the changeset viewer.