Changeset 8873 for branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Timestamp:
- 11/07/12 10:19:31 (12 years ago)
- Location:
- branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
- Files:
-
- 6 added
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression
-
Property
svn:ignore
set to
obj
Plugin.cs
*.user
-
Property
svn:ignore
set to
-
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessPolyTen.cs
r8826 r8873 48 48 protected override List<List<double>> GenerateValues() { 49 49 var mt = new MersenneTwister(31415); 50 var normalRand = new NormalDistributedRandom(mt, 1, 1);51 50 52 51 List<List<double>> data = new List<List<double>>(); 53 52 for (int i = 0; i < AllowedInputVariables.Count(); i++) { 54 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1 0, 10).ToList());53 data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList()); 55 54 } 56 55 57 56 58 var hyp = (from i in Enumerable.Range(0, 12) // for each CovSEiso 59 from j in Enumerable.Range(0, 2) // for each parameter (length, scale) 60 select normalRand.NextDouble()) 61 .Concat(new double[] { -5.0 }); // noise 57 var hyp = new double[] 58 { 59 0.0, 0.0, 60 0.0, 0.0, 61 0.0, 0.0, 62 0.0, 0.0, 63 0.0, 0.0, 64 0.0, 0.0, 65 0.0, 0.0, 66 0.0, 0.0, 67 0.0, 0.0, 68 0.0, 0.0, 69 0.0, 0.0, 70 0.0, 0.0, 71 0.0, 0.0, 72 0.0, 0.0, 73 0.0, 0.0, 74 -5.0 // noise 75 }; 76 62 77 63 78 var covarianceFunction = new CovarianceSum(); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIsoDependentNoise.cs
r8826 r8873 60 60 covarianceFunction.Terms.Add(prod); 61 61 covarianceFunction.Terms.Add(new CovarianceNoise()); 62 covarianceFunction.SetParameter(new double[] { Math.Log(0.1), Math.Log(Math.Sqrt(1)), Math.Log(0.5), Math.Log(Math.Sqrt(1)), Math.Log(Math.Sqrt(0.1)), Math.Log(Math.Sqrt(0.01)) }); 62 var hyp = new double[] 63 { 64 Math.Log(0.1), Math.Log(Math.Sqrt(1)), // SE iso 65 Math.Log(0.5), Math.Log(Math.Sqrt(1)), // SE iso for noise 66 Math.Log(Math.Sqrt(0.1)), // dependent noise 67 Math.Log(Math.Sqrt(0.01)) // noise 68 }; 69 covarianceFunction.SetParameter(hyp); 63 70 64 71 var mt = new MersenneTwister(31415); -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/Util.cs
r8826 r8873 34 34 public static List<double> SampleGaussianProcess(IRandom random, ICovarianceFunction covFunction, List<List<double>> data) { 35 35 36 double[,] x = new double[data[0].Count, 1];36 double[,] x = new double[data[0].Count, data.Count]; 37 37 for (int i = 0; i < x.GetLength(0); i++) 38 38 for (int j = 0; j < x.GetLength(1); j++) -
branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/VariousInstanceProvider.cs
r8826 r8873 24 24 25 25 namespace HeuristicLab.Problems.Instances.DataAnalysis { 26 public class VariousInstanceProvider : ArtificialRegressionInstanceProvider {26 public class InstanceProvider : ArtificialRegressionInstanceProvider { 27 27 public override string Name { 28 get { return " VariousBenchmark Problems"; }28 get { return "GPR Benchmark Problems"; } 29 29 } 30 30 public override string Description { … … 40 40 public override IEnumerable<IDataDescriptor> GetDataDescriptors() { 41 41 List<IDataDescriptor> descriptorList = new List<IDataDescriptor>(); 42 descriptorList.Add(new BreimanOne());43 descriptorList.Add(new FriedmanOne());44 descriptorList.Add(new FriedmanTwo());45 descriptorList.Add(new PolyTen());46 42 descriptorList.Add(new GaussianProcessPolyTen()); 47 43 descriptorList.Add(new GaussianProcessSEIso()); 44 descriptorList.Add(new GaussianProcessSEIso2dim()); 48 45 descriptorList.Add(new GaussianProcessSEIsoDependentNoise()); 49 descriptorList.Add(new SpatialCoevolution());50 46 return descriptorList; 51 47 }
Note: See TracChangeset
for help on using the changeset viewer.