Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
10/03/12 11:38:57 (12 years ago)
Author:
mkommend
Message:

#1964: Added new results to symbolic classification and regression solutions. Additionally, the way results are calculated was refactored and unified.

Location:
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationSolution.cs

    r7259 r8723  
    7171
    7272    protected override void RecalculateResults() {
     73      base.RecalculateResults();
    7374      ModelLength = Model.SymbolicExpressionTree.Length;
    7475      ModelDepth = Model.SymbolicExpressionTree.Depth;
    75       CalculateResults();
    7676    }
    7777  }
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationSolution.cs

    r8684 r8723  
    2020#endregion
    2121
     22using System.Linq;
    2223using HeuristicLab.Common;
    2324using HeuristicLab.Core;
     
    3536    private const string ModelLengthResultName = "Model Length";
    3637    private const string ModelDepthResultName = "Model Depth";
     38
     39    private const string EstimationLimitsResultsResultName = "Estimation Limits Results";
     40    private const string EstimationLimitsResultName = "Estimation Limits";
     41    private const string TrainingUpperEstimationLimitHitsResultName = "Training Upper Estimation Limit Hits";
     42    private const string TestLowerEstimationLimitHitsResultName = "Test Lower Estimation Limit Hits";
     43    private const string TrainingLowerEstimationLimitHitsResultName = "Training Lower Estimation Limit Hits";
     44    private const string TestUpperEstimationLimitHitsResultName = "Test Upper Estimation Limit Hits";
     45    private const string TrainingNaNEvaluationsResultName = "Training NaN Evaluations";
     46    private const string TestNaNEvaluationsResultName = "Test NaN Evaluations";
    3747
    3848    public new ISymbolicDiscriminantFunctionClassificationModel Model {
     
    5767      private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
    5868    }
     69
     70    private ResultCollection EstimationLimitsResultCollection {
     71      get { return (ResultCollection)this[EstimationLimitsResultsResultName].Value; }
     72    }
     73    public DoubleLimit EstimationLimits {
     74      get { return (DoubleLimit)EstimationLimitsResultCollection[EstimationLimitsResultName].Value; }
     75    }
     76
     77    public int TrainingUpperEstimationLimitHits {
     78      get { return ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value; }
     79      private set { ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value = value; }
     80    }
     81    public int TestUpperEstimationLimitHits {
     82      get { return ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value; }
     83      private set { ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value = value; }
     84    }
     85    public int TrainingLowerEstimationLimitHits {
     86      get { return ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value; }
     87      private set { ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value = value; }
     88    }
     89    public int TestLowerEstimationLimitHits {
     90      get { return ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value; }
     91      private set { ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value = value; }
     92    }
     93    public int TrainingNaNEvaluations {
     94      get { return ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value; }
     95      private set { ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value = value; }
     96    }
     97    public int TestNaNEvaluations {
     98      get { return ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value; }
     99      private set { ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value = value; }
     100    }
     101
    59102    [StorableConstructor]
    60103    private SymbolicDiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
     
    66109      Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue()));
    67110      Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue()));
    68       CalculateSymbolicDiscriminantFunctionClassificationResults();
     111
     112
     113      ResultCollection estimationLimitResults = new ResultCollection();
     114      estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
     115      estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
     116      estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
     117      estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
     118      estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
     119      estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
     120      estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
     121      Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
     122
     123      CalculateResults();
    69124    }
    70125
     
    73128    }
    74129
    75     private void CalculateSymbolicDiscriminantFunctionClassificationResults() {
    76       CalculateResults();
    77       CalculateRegressionResults();
     130    [StorableHook(HookType.AfterDeserialization)]
     131    private void AfterDeserialization() {
     132      if (!ContainsKey(EstimationLimitsResultsResultName)) {
     133        ResultCollection estimationLimitResults = new ResultCollection();
     134        estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
     135        estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
     136        estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
     137        estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
     138        estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
     139        estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
     140        estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
     141        Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
     142        CalculateResults();
     143      }
     144    }
     145
     146
     147    private void CalculateResults() {
    78148      ModelLength = Model.SymbolicExpressionTree.Length;
    79149      ModelDepth = Model.SymbolicExpressionTree.Depth;
     150
     151      EstimationLimits.Lower = Model.LowerEstimationLimit;
     152      EstimationLimits.Upper = Model.UpperEstimationLimit;
     153
     154      TrainingUpperEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
     155      TestUpperEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
     156      TrainingLowerEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
     157      TestLowerEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
     158      TrainingNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TrainingIndices).Count(double.IsNaN);
     159      TestNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TestIndices).Count(double.IsNaN);
    80160    }
    81161
    82162    protected override void RecalculateResults() {
    83       CalculateSymbolicDiscriminantFunctionClassificationResults();
     163      base.RecalculateResults();
     164      CalculateResults();
    84165    }
    85166  }
Note: See TracChangeset for help on using the changeset viewer.