Changeset 8139 for trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification
- Timestamp:
- 06/27/12 17:34:17 (12 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationEnsembleSolution.cs
r7259 r8139 148 148 public override IEnumerable<double> EstimatedTrainingClassValues { 149 149 get { 150 var rows = ProblemData.TrainingIndi zes;150 var rows = ProblemData.TrainingIndices; 151 151 var estimatedValuesEnumerators = (from model in Model.Models 152 152 select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() }) … … 167 167 public override IEnumerable<double> EstimatedTestClassValues { 168 168 get { 169 var rows = ProblemData.TestIndi zes;169 var rows = ProblemData.TestIndices; 170 170 var estimatedValuesEnumerators = (from model in Model.Models 171 171 select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedClassValues(ProblemData.Dataset, rows).GetEnumerator() }) 172 172 .ToList(); 173 var rowsEnumerator = ProblemData.TestIndi zes.GetEnumerator();173 var rowsEnumerator = ProblemData.TestIndices.GetEnumerator(); 174 174 // aggregate to make sure that MoveNext is called for all enumerators 175 175 while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) { -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolution.cs
r7259 r8139 51 51 } 52 52 public override IEnumerable<double> EstimatedTrainingClassValues { 53 get { return GetEstimatedClassValues(ProblemData.TrainingIndi zes); }53 get { return GetEstimatedClassValues(ProblemData.TrainingIndices); } 54 54 } 55 55 public override IEnumerable<double> EstimatedTestClassValues { 56 get { return GetEstimatedClassValues(ProblemData.TestIndi zes); }56 get { return GetEstimatedClassValues(ProblemData.TestIndices); } 57 57 } 58 58 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs
r7259 r8139 87 87 protected void CalculateResults() { 88 88 double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values 89 double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndi zes).ToArray();89 double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray(); 90 90 double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values 91 double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndi zes).ToArray();91 double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray(); 92 92 93 93 OnlineCalculatorError errorState; -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolution.cs
r7259 r8139 59 59 } 60 60 public override IEnumerable<double> EstimatedTrainingClassValues { 61 get { return GetEstimatedClassValues(ProblemData.TrainingIndi zes); }61 get { return GetEstimatedClassValues(ProblemData.TrainingIndices); } 62 62 } 63 63 public override IEnumerable<double> EstimatedTestClassValues { 64 get { return GetEstimatedClassValues(ProblemData.TestIndi zes); }64 get { return GetEstimatedClassValues(ProblemData.TestIndices); } 65 65 } 66 66 … … 82 82 } 83 83 public override IEnumerable<double> EstimatedTrainingValues { 84 get { return GetEstimatedValues(ProblemData.TrainingIndi zes); }84 get { return GetEstimatedValues(ProblemData.TrainingIndices); } 85 85 } 86 86 public override IEnumerable<double> EstimatedTestValues { 87 get { return GetEstimatedValues(ProblemData.TestIndi zes); }87 get { return GetEstimatedValues(ProblemData.TestIndices); } 88 88 } 89 89 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs
r7259 r8139 103 103 protected void CalculateRegressionResults() { 104 104 double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values 105 double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndi zes).ToArray();105 double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray(); 106 106 double[] estimatedTestValues = EstimatedTestValues.ToArray(); // cache values 107 double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndi zes).ToArray();107 double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray(); 108 108 109 109 OnlineCalculatorError errorState; … … 140 140 double[] classValues; 141 141 double[] thresholds; 142 var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndi zes);142 var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices); 143 143 AccuracyMaximizationThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds); 144 144 … … 149 149 double[] classValues; 150 150 double[] thresholds; 151 var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndi zes);151 var targetClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices); 152 152 NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(ProblemData, EstimatedTrainingValues, targetClassValues, out classValues, out thresholds); 153 153
Note: See TracChangeset
for help on using the changeset viewer.