- Timestamp:
- 06/27/12 17:34:17 (13 years ago)
- Location:
- trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans/KMeansClustering.cs
r8080 r8139 85 85 Dataset dataset = problemData.Dataset; 86 86 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 87 IEnumerable<int> rows = problemData.TrainingIndi zes;87 IEnumerable<int> rows = problemData.TrainingIndices; 88 88 int info; 89 89 double[,] centers; -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans/KMeansClusteringSolution.cs
r7259 r8139 52 52 public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData) 53 53 : base(model, problemData) { 54 double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndi zes);55 double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndi zes);54 double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices); 55 double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices); 56 56 this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares))); 57 57 this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares)));
Note: See TracChangeset
for help on using the changeset viewer.