Changeset 8113 for trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs
- Timestamp:
- 06/26/12 08:27:57 (12 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs
r7677 r8113 56 56 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 57 57 IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 58 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);59 58 OnlineCalculatorError errorState; 60 59 … … 62 61 if (applyLinearScaling) { 63 62 var mseCalculator = new OnlineMeanSquaredErrorCalculator(); 64 CalculateWithScaling(targetValues, boundedEstimatedValues, mseCalculator, problemData.Dataset.Rows);63 CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows); 65 64 errorState = mseCalculator.ErrorState; 66 65 mse = mseCalculator.MeanSquaredError; 67 } else 66 } else { 67 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 68 68 mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState); 69 69 } 70 70 if (errorState != OnlineCalculatorError.None) return Double.NaN; 71 71 else return mse;
Note: See TracChangeset
for help on using the changeset viewer.