Free cookie consent management tool by TermsFeed Policy Generator

Changeset 7989


Ignore:
Timestamp:
06/12/12 10:31:56 (11 years ago)
Author:
mkommend
Message:

#1081: Improved performance of time series prognosis.

Location:
branches/HeuristicLab.TimeSeries
Files:
29 edited
2 copied

Legend:

Unmodified
Added
Removed
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Compiler/SymbolicExpressionTreeCompiler.cs

    r7268 r7989  
    2525
    2626namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
    27   public class SymbolicExpressionTreeCompiler {
    28     private Dictionary<string, ushort> entryPoint = new Dictionary<string, ushort>();
    29     private List<Func<Instruction, Instruction>> postInstructionCompiledHooks = new List<Func<Instruction, Instruction>>();
     27  public static class SymbolicExpressionTreeCompiler {
    3028
    31     public Instruction[] Compile(ISymbolicExpressionTree tree, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper) {
     29    public static Instruction[] Compile(ISymbolicExpressionTree tree, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper) {
     30      return Compile(tree, opCodeMapper, Enumerable.Empty<Func<Instruction, Instruction>>());
     31    }
     32    public static Instruction[] Compile(ISymbolicExpressionTree tree, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper, IEnumerable<Func<Instruction, Instruction>> postInstructionCompiledHooks) {
     33      Dictionary<string, ushort> entryPoint = new Dictionary<string, ushort>();
    3234      List<Instruction> code = new List<Instruction>();
    33       entryPoint.Clear();
    3435      // compile main body branches
    3536      foreach (var branch in tree.Root.GetSubtree(0).Subtrees) {
    36         code.AddRange(Compile(branch, opCodeMapper));
     37        code.AddRange(Compile(branch, opCodeMapper, postInstructionCompiledHooks));
    3738      }
    3839      // compile function branches
     
    4344        if (code.Count > ushort.MaxValue) throw new ArgumentException("Code for the tree is too long (> ushort.MaxValue).");
    4445        entryPoint[branch.FunctionName] = (ushort)code.Count;
    45         code.AddRange(Compile(branch.GetSubtree(0), opCodeMapper));
     46        code.AddRange(Compile(branch.GetSubtree(0), opCodeMapper, postInstructionCompiledHooks));
    4647      }
    4748      // address of all functions is fixed now
     
    5960    }
    6061
    61     private IEnumerable<Instruction> Compile(ISymbolicExpressionTreeNode branch, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper) {
     62    private static IEnumerable<Instruction> Compile(ISymbolicExpressionTreeNode branch, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper, IEnumerable<Func<Instruction, Instruction>> postInstructionCompiledHooks) {
    6263      foreach (var node in branch.IterateNodesPrefix()) {
    6364        Instruction instr = new Instruction();
     
    7778      }
    7879    }
    79 
    80     /// <summary>
    81     /// Adds a function that will be called every time an instruction is compiled.
    82     /// The compiled will insert the instruction returned by the hook into the code.
    83     /// </summary>
    84     /// <param name="hook">The hook that should be called for each compiled instruction.</param>
    85     public void AddInstructionPostProcessingHook(Func<Instruction, Instruction> hook) {
    86       postInstructionCompiledHooks.Add(hook);
    87     }
    8880  }
    8981}
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views-3.4.csproj

    r7890 r7989  
    103103    <Reference Include="HeuristicLab.MainForm.WindowsForms-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
    104104    <Reference Include="HeuristicLab.Optimization-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
     105    <Reference Include="HeuristicLab.Parameters-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
     106    <Reference Include="HeuristicLab.Persistence-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
    105107    <Reference Include="HeuristicLab.PluginInfrastructure-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
    106108    <Reference Include="HeuristicLab.Visualization.ChartControlsExtensions-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL" />
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis.Views/3.4/InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView.cs

    r7463 r7989  
    5050
    5151    protected override void UpdateModel(ISymbolicExpressionTree tree) {
    52       var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter, Content.ProblemData.TargetVariables.ToArray());
     52      var model = new SymbolicTimeSeriesPrognosisModel(tree, Content.Model.Interpreter);
    5353      SymbolicTimeSeriesPrognosisModel.Scale(model, Content.ProblemData);
    5454      Content.Model = model;
     
    6666    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
    6767      var interpreter = Content.Model.Interpreter;
     68      var rows = Content.ProblemData.TrainingIndizes;
    6869      var dataset = Content.ProblemData.Dataset;
    69       var rows = Content.ProblemData.TrainingIndizes;
    70       Dictionary<ISymbolicExpressionTreeNode, double> impactValues =
    71         new Dictionary<ISymbolicExpressionTreeNode, double>();
    72       var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, Content.ProblemData.TargetVariables.ToArray(), rows, 1)
    73         .ToArray();
    74       int i = 0;
    75       int nTargetVariables = Content.ProblemData.TargetVariables.Count();
    76       foreach (var targetVariable in Content.ProblemData.TargetVariables) {
    77         List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(i).IterateNodesPostfix().ToList();
    78         var targetValues = dataset.GetDoubleValues(targetVariable, rows);
    79         OnlineCalculatorError errorState;
    80         double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput.Skip(i).TakeEvery(nTargetVariables), out errorState);
    81         if (errorState != OnlineCalculatorError.None) originalR2 = 0.0;
     70      var targetVariable = Content.ProblemData.TargetVariable;
     71      var targetValues = dataset.GetDoubleValues(targetVariable, rows);
     72      var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToArray();
    8273
    83         foreach (ISymbolicExpressionTreeNode node in nodes) {
    84           var parent = node.Parent;
    85           constantNode.Value = CalculateReplacementValue(node, tree);
    86           ISymbolicExpressionTreeNode replacementNode = constantNode;
    87           SwitchNode(parent, node, replacementNode);
    88           var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, Content.ProblemData.TargetVariables.ToArray(), rows, 1);
    89           double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput.Skip(i).TakeEvery(nTargetVariables), out errorState);
    90           if (errorState != OnlineCalculatorError.None) newR2 = 0.0;
     74      Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
     75      List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
     76      OnlineCalculatorError errorState;
     77      double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput, out errorState);
     78      if (errorState != OnlineCalculatorError.None) originalR2 = 0.0;
    9179
    92           // impact = 0 if no change
    93           // impact < 0 if new solution is better
    94           // impact > 0 if new solution is worse
    95           impactValues[node] = originalR2 - newR2;
    96           SwitchNode(parent, replacementNode, node);
    97         }
    98         i++;
     80      foreach (ISymbolicExpressionTreeNode node in nodes) {
     81        var parent = node.Parent;
     82        constantNode.Value = CalculateReplacementValue(node, tree);
     83        ISymbolicExpressionTreeNode replacementNode = constantNode;
     84        SwitchNode(parent, node, replacementNode);
     85        var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows);
     86        double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput, out errorState);
     87        if (errorState != OnlineCalculatorError.None) newR2 = 0.0;
     88
     89        // impact = 0 if no change
     90        // impact < 0 if new solution is better
     91        // impact > 0 if new solution is worse
     92        impactValues[node] = originalR2 - newR2;
     93        SwitchNode(parent, replacementNode, node);
    9994      }
    10095      return impactValues;
     
    113108      var interpreter = Content.Model.Interpreter;
    114109      var rows = Content.ProblemData.TrainingIndizes;
    115       var allPrognosedValues = interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, Content.ProblemData.TargetVariables.ToArray(), rows, 1);
     110      var allPrognosedValues = interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows);
    116111
    117112      return allPrognosedValues.Median();
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis-3.4.csproj

    r7886 r7989  
    123123  </ItemGroup>
    124124  <ItemGroup>
     125    <Compile Include="Interfaces\ISymbolicTimeSeriesPrognogisExpressionTreeInterpreter.cs" />
    125126    <Compile Include="Interfaces\ISymbolicTimeSeriesPrognosisInterpreterOperator.cs" />
    126127    <Compile Include="Interfaces\ISymbolicTimeSeriesPrognosisEvaluator.cs" />
     
    137138    <Compile Include="SingleObjective\SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer.cs" />
    138139    <Compile Include="SingleObjective\SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer.cs" />
     140    <Compile Include="SymbolicTimeSeriesPrognosisExpressionTreeInterpreter.cs" />
    139141    <Compile Include="SymbolicTimeSeriesPrognosisModel.cs" />
    140142    <Compile Include="SymbolicTimeSeriesPrognosisSolution.cs" />
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/Interfaces/ISymbolicTimeSeriesPrognogisExpressionTreeInterpreter.cs

    r7929 r7989  
    2121
    2222using System.Collections.Generic;
    23 using HeuristicLab.Core;
    2423using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
    2524
    2625namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
    27   public interface ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter : INamedItem {
    28     IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset,
    29                                                         string[] targetVariables, IEnumerable<int> rows);
    30     IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, string[] targetVariables, IEnumerable<int> rows, int horizon);
     26  public interface ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter : ISymbolicDataAnalysisExpressionTreeInterpreter {
     27    string TargetVariable { get; set; }
     28    IEnumerable<IEnumerable<double>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows, int horizon);
    3129  }
    3230}
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator.cs

    r7120 r7989  
    2121
    2222
     23using System;
     24using System.Collections.Generic;
    2325using HeuristicLab.Common;
    2426using HeuristicLab.Core;
     
    2729using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    2830namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
     31  [StorableClass]
    2932  public abstract class SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator<ITimeSeriesPrognosisProblemData>, ISymbolicTimeSeriesPrognosisSingleObjectiveEvaluator {
    3033    private const string HorizonParameterName = "Horizon";
     34    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
    3135
     36    public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
     37      get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
     38    }
     39    public bool ApplyLinearScaling {
     40      get { return ApplyLinearScalingParameter.Value.Value; }
     41      set { ApplyLinearScalingParameter.Value.Value = value; }
     42    }
    3243    public IValueLookupParameter<IntValue> HorizonParameter {
    3344      get { return (IValueLookupParameter<IntValue>)Parameters[HorizonParameterName]; }
     
    4253    protected SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator()
    4354      : base() {
     55      Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.", new BoolValue(true)));
    4456      Parameters.Add(new ValueLookupParameter<IntValue>(HorizonParameterName, "The time interval for which the prognosis should be calculated.", new IntValue(1)));
     57      ApplyLinearScalingParameter.Hidden = true;
     58    }
     59
     60
     61    [ThreadStatic]
     62    private static double[] cache;
     63    protected static void CalculateWithScaling(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues, IOnlineCalculator calculator, int maxRows) {
     64      if (cache == null || cache.GetLength(0) < maxRows) {
     65        cache = new double[maxRows];
     66      }
     67
     68      //calculate linear scaling
     69      //the static methods of the calculator could not be used as it performs a check if the enumerators have an equal amount of elements
     70      //this is not true if the cache is used
     71      int i = 0;
     72      var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
     73      var targetValuesEnumerator = targetValues.GetEnumerator();
     74      var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
     75      while (targetValuesEnumerator.MoveNext() && estimatedValuesEnumerator.MoveNext()) {
     76        double target = targetValuesEnumerator.Current;
     77        double estimated = estimatedValuesEnumerator.Current;
     78        linearScalingCalculator.Add(estimated, target);
     79        cache[i] = estimated;
     80        i++;
     81      }
     82      double alpha = linearScalingCalculator.Alpha;
     83      double beta = linearScalingCalculator.Beta;
     84
     85      //calculate the quality by using the passed online calculator
     86      targetValuesEnumerator = targetValues.GetEnumerator();
     87      i = 0;
     88      while (targetValuesEnumerator.MoveNext()) {
     89        double target = targetValuesEnumerator.Current;
     90        double estimated = cache[i] * beta + alpha;
     91        calculator.Add(target, estimated);
     92        i++;
     93      }
    4594    }
    4695  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator.cs

    r7183 r7989  
    2222using System;
    2323using System.Collections.Generic;
    24 using System.Drawing.Printing;
    2524using System.Linq;
    2625using HeuristicLab.Common;
     
    5150      IEnumerable<int> rows = GenerateRowsToEvaluate();
    5251
    53       double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue,
    54         solution,
     52      var interpreter = (ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
     53
     54      double quality = Calculate(interpreter, solution,
    5555        EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper,
    5656        ProblemDataParameter.ActualValue,
    57         rows, HorizonParameter.ActualValue.Value);
     57        rows, HorizonParameter.ActualValue.Value, ApplyLinearScaling);
    5858      QualityParameter.ActualValue = new DoubleValue(quality);
    5959
     
    6161    }
    6262
    63     public static double Calculate(ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows, int horizon) {
    64       double[] alpha;
    65       double[] beta;
    66       DetermineScalingFactors(solution, problemData, interpreter, rows, out alpha, out beta);
    67       var scaledSolution = Scale(solution, alpha, beta);
    68       string[] targetVariables = problemData.TargetVariables.ToArray();
    69       var meanSquaredErrorCalculators = Enumerable.Range(0, problemData.TargetVariables.Count())
    70         .Select(i => new OnlineMeanSquaredErrorCalculator()).ToArray();
     63    public static double Calculate(ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows, int horizon, bool applyLinearScaling) {
     64      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows.SelectMany(r => Enumerable.Range(r, horizon)));
     65      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows, horizon).SelectMany(x => x);
     66      IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
     67      OnlineCalculatorError errorState;
    7168
    72       var allContinuationsEnumerator = interpreter.GetSymbolicExpressionTreeValues(scaledSolution, problemData.Dataset,
    73                                                                                   targetVariables,
    74                                                                                   rows, horizon).GetEnumerator();
    75       allContinuationsEnumerator.MoveNext();
    76       // foreach row
    77       foreach (var row in rows) {
    78         // foreach horizon
    79         for (int h = 0; h < horizon; h++) {
    80           // foreach component
    81           for (int i = 0; i < meanSquaredErrorCalculators.Length; i++) {
    82             double e = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, allContinuationsEnumerator.Current));
    83             meanSquaredErrorCalculators[i].Add(problemData.Dataset.GetDoubleValue(targetVariables[i], row + h), e);
    84             if (meanSquaredErrorCalculators[i].ErrorState == OnlineCalculatorError.InvalidValueAdded)
    85               return double.MaxValue;
    86             allContinuationsEnumerator.MoveNext();
    87           }
    88         }
    89       }
    90       var meanCalculator = new OnlineMeanAndVarianceCalculator();
    91       foreach (var calc in meanSquaredErrorCalculators) {
    92         if (calc.ErrorState != OnlineCalculatorError.None) return double.MaxValue;
    93         meanCalculator.Add(calc.MeanSquaredError);
    94       }
     69      double mse;
     70      if (applyLinearScaling) {
     71        var mseCalculator = new OnlineMeanSquaredErrorCalculator();
     72        CalculateWithScaling(targetValues, boundedEstimatedValues, mseCalculator, problemData.Dataset.Rows);
     73        errorState = mseCalculator.ErrorState;
     74        mse = mseCalculator.MeanSquaredError;
     75      } else
     76        mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
    9577
    96       return meanCalculator.MeanErrorState == OnlineCalculatorError.None ? meanCalculator.Mean : double.MaxValue;
     78      if (errorState != OnlineCalculatorError.None) return Double.NaN;
     79      else return mse;
    9780    }
    9881
    99     private static ISymbolicExpressionTree Scale(ISymbolicExpressionTree solution, double[] alpha, double[] beta) {
    100       var clone = (ISymbolicExpressionTree)solution.Clone();
    101       int n = alpha.Length;
    102       for (int i = 0; i < n; i++) {
    103         var parent = clone.Root.GetSubtree(0);
    104         var rpb = clone.Root.GetSubtree(0).GetSubtree(i);
    105         var scaledRpb = MakeSum(
    106           MakeProduct(rpb,
    107             MakeConstant(beta[i], clone.Root.Grammar), clone.Root.Grammar),
    108             MakeConstant(alpha[i], clone.Root.Grammar), clone.Root.Grammar);
    109         parent.RemoveSubtree(i);
    110         parent.InsertSubtree(i, scaledRpb);
    111       }
    112       return clone;
    113     }
    114 
    115     private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, ISymbolicExpressionTreeGrammar grammar) {
    116       var sum = grammar.Symbols.Where(s => s is Addition).First().CreateTreeNode();
    117       sum.AddSubtree(a);
    118       sum.AddSubtree(b);
    119       return sum;
    120     }
    121 
    122     private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, ISymbolicExpressionTreeGrammar grammar) {
    123       var prod = grammar.Symbols.Where(s => s is Multiplication).First().CreateTreeNode();
    124       prod.AddSubtree(a);
    125       prod.AddSubtree(b);
    126       return prod;
    127     }
    128 
    129     private static ISymbolicExpressionTreeNode MakeConstant(double c, ISymbolicExpressionTreeGrammar grammar) {
    130       var node = (ConstantTreeNode)grammar.Symbols.Where(s => s is Constant).First().CreateTreeNode();
    131       node.Value = c;
    132       return node;
    133     }
    134 
    135     private static void DetermineScalingFactors(ISymbolicExpressionTree solution, ITimeSeriesPrognosisProblemData problemData, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, IEnumerable<int> rows, out double[] alpha, out double[] beta) {
    136       string[] targetVariables = problemData.TargetVariables.ToArray();
    137       int nComponents = targetVariables.Length;
    138       alpha = new double[nComponents];
    139       beta = new double[nComponents];
    140       var oneStepPredictionsEnumerator = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, targetVariables, rows).GetEnumerator();
    141       var scalingParameterCalculators =
    142         Enumerable.Repeat(0, nComponents).Select(x => new OnlineLinearScalingParameterCalculator()).ToArray();
    143       var targetValues = problemData.Dataset.GetVectorEnumerable(targetVariables, rows);
    144       var targetValueEnumerator = targetValues.GetEnumerator();
    145 
    146       var more = oneStepPredictionsEnumerator.MoveNext() & targetValueEnumerator.MoveNext();
    147       while (more) {
    148         for (int i = 0; i < nComponents; i++) {
    149           scalingParameterCalculators[i].Add(oneStepPredictionsEnumerator.Current, targetValueEnumerator.Current);
    150           more = oneStepPredictionsEnumerator.MoveNext() & targetValueEnumerator.MoveNext();
    151         }
    152       }
    153 
    154       for (int i = 0; i < nComponents; i++) {
    155         if (scalingParameterCalculators[i].ErrorState == OnlineCalculatorError.None) {
    156           alpha[i] = scalingParameterCalculators[i].Alpha;
    157           beta[i] = scalingParameterCalculators[i].Beta;
    158         } else {
    159           alpha[i] = 0.0;
    160           beta[i] = 1.0;
    161         }
    162       }
    163     }
    16482
    16583    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows) {
     
    16886      HorizonParameter.ExecutionContext = context;
    16987
    170       double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, HorizonParameter.ActualValue.Value);
     88      double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, HorizonParameter.ActualValue.Value, ApplyLinearScaling);
    17189
    17290      HorizonParameter.ExecutionContext = null;
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveProblem.cs

    r7843 r7989  
    5454      : base(new TimeSeriesPrognosisProblemData(), new SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
    5555      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
    56 
    5756      EstimationLimitsParameter.Hidden = true;
    5857
     
    6160      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
    6261
     62      var interpeter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter();
     63      interpeter.TargetVariable = ProblemData.TargetVariable;
     64      SymbolicExpressionTreeInterpreter = interpeter;
     65
    6366      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
    64 
    6567      ConfigureGrammarSymbols();
    6668
     
    8890    protected override void OnProblemDataChanged() {
    8991      base.OnProblemDataChanged();
     92      var interpreter = SymbolicExpressionTreeInterpreter as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter;
     93      if (interpreter != null) {
     94        interpreter.TargetVariable = ProblemData.TargetVariable;
     95      }
    9096      UpdateEstimationLimits();
     97
    9198    }
    9299
     
    107114      }
    108115    }
    109 
    110116  }
    111117}
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer.cs

    r7183 r7989  
    2020#endregion
    2121
    22 using System.Linq;
    2322using HeuristicLab.Common;
    2423using HeuristicLab.Core;
     
    7675
    7776    protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
    78       var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariables.ToArray(), EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
     77      var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
    7978      if (ApplyLinearScaling.Value)
    8079        SymbolicTimeSeriesPrognosisModel.Scale(model, ProblemDataParameter.ActualValue);
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer.cs

    r7183 r7989  
    2020#endregion
    2121
    22 using System.Linq;
    2322using HeuristicLab.Common;
    2423using HeuristicLab.Core;
     
    6564
    6665    protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
    67       var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariables.ToArray(), EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
     66      var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
    6867      if (ApplyLinearScaling.Value)
    6968        SymbolicTimeSeriesPrognosisModel.Scale(model, ProblemDataParameter.ActualValue);
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SymbolicTimeSeriesPrognosisExpressionTreeInterpreter.cs

    r7949 r7989  
    2222using System;
    2323using System.Collections.Generic;
     24using System.Linq;
    2425using HeuristicLab.Common;
    2526using HeuristicLab.Core;
     
    2829using HeuristicLab.Parameters;
    2930using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    30 using System.Linq;
    3131
    3232namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
    3333  [StorableClass]
    3434  [Item("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
    35   public sealed class SymbolicTimeSeriesPrognosisInterpreter : ParameterizedNamedItem, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter {
    36     private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
    37     #region private classes
    38     private class InterpreterState {
    39       private double[] argumentStack;
    40       private int argumentStackPointer;
    41       private Instruction[] code;
    42       private int pc;
    43       public int ProgramCounter {
    44         get { return pc; }
    45         set { pc = value; }
    46       }
    47       internal InterpreterState(Instruction[] code, int argumentStackSize) {
    48         this.code = code;
    49         this.pc = 0;
    50         if (argumentStackSize > 0) {
    51           this.argumentStack = new double[argumentStackSize];
     35  public sealed class SymbolicTimeSeriesPrognosisExpressionTreeInterpreter : SymbolicDataAnalysisExpressionTreeInterpreter, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter {
     36    private const string TargetVariableParameterName = "TargetVariable";
     37
     38    public IFixedValueParameter<StringValue> TargetVariableParameter {
     39      get { return (IFixedValueParameter<StringValue>)Parameters[TargetVariableParameterName]; }
     40    }
     41
     42    public string TargetVariable {
     43      get { return TargetVariableParameter.Value.Value; }
     44      set { TargetVariableParameter.Value.Value = value; }
     45    }
     46
     47    [ThreadStatic]
     48    private static double[] targetVariableCache;
     49    [ThreadStatic]
     50    private static List<int> invalidateCacheIndexes;
     51
     52    [StorableConstructor]
     53    private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { }
     54    private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(SymbolicTimeSeriesPrognosisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { }
     55    public override IDeepCloneable Clone(Cloner cloner) {
     56      return new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(this, cloner);
     57    }
     58
     59    public SymbolicTimeSeriesPrognosisExpressionTreeInterpreter()
     60      : base("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
     61      Parameters.Add(new FixedValueParameter<StringValue>(TargetVariableParameterName));
     62      TargetVariableParameter.Hidden = true;
     63    }
     64
     65    // for each row several (=#horizon) future predictions
     66    public IEnumerable<IEnumerable<double>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows, int horizon) {
     67      return GetSymbolicExpressionTreeValues(tree, dataset, rows, rows.Select(row => horizon));
     68    }
     69
     70    public IEnumerable<IEnumerable<double>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
     71      if (CheckExpressionsWithIntervalArithmetic.Value)
     72        throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
     73      if (targetVariableCache == null || targetVariableCache.GetLength(0) < dataset.Rows)
     74        targetVariableCache = dataset.GetDoubleValues(TargetVariable).ToArray();
     75      if (invalidateCacheIndexes == null)
     76        invalidateCacheIndexes = new List<int>(10);
     77
     78      string targetVariable = TargetVariable;
     79      EvaluatedSolutions.Value++; // increment the evaluated solutions counter
     80      var state = PrepareInterpreterState(tree, dataset, targetVariableCache);
     81      var rowsEnumerator = rows.GetEnumerator();
     82      var horizonsEnumerator = horizons.GetEnumerator();
     83
     84      // produce a n-step forecast for all rows
     85      while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
     86        int row = rowsEnumerator.Current;
     87        int horizon = horizonsEnumerator.Current;
     88
     89        double[] vProgs = new double[horizon];
     90        for (int i = 0; i < horizon; i++) {
     91          int localRow = i + row; // create a local variable for the ref parameter
     92          vProgs[i] = Evaluate(dataset, ref localRow, state);
     93          targetVariableCache[localRow] = vProgs[i];
     94          invalidateCacheIndexes.Add(localRow);
     95          state.Reset();
    5296        }
    53         this.argumentStackPointer = 0;
     97
     98        yield return vProgs;
     99
     100        int j = 0;
     101        foreach (var targetValue in dataset.GetDoubleValues(TargetVariable, invalidateCacheIndexes)) {
     102          targetVariableCache[invalidateCacheIndexes[j]] = targetValue;
     103          j++;
     104        }
     105        invalidateCacheIndexes.Clear();
    54106      }
    55107
    56       internal void Reset() {
    57         this.pc = 0;
    58         this.argumentStackPointer = 0;
    59       }
    60 
    61       internal Instruction NextInstruction() {
    62         return code[pc++];
    63       }
    64       private void Push(double val) {
    65         argumentStack[argumentStackPointer++] = val;
    66       }
    67       private double Pop() {
    68         return argumentStack[--argumentStackPointer];
    69       }
    70 
    71       internal void CreateStackFrame(double[] argValues) {
    72         // push in reverse order to make indexing easier
    73         for (int i = argValues.Length - 1; i >= 0; i--) {
    74           argumentStack[argumentStackPointer++] = argValues[i];
    75         }
    76         Push(argValues.Length);
    77       }
    78 
    79       internal void RemoveStackFrame() {
    80         int size = (int)Pop();
    81         argumentStackPointer -= size;
    82       }
    83 
    84       internal double GetStackFrameValue(ushort index) {
    85         // layout of stack:
    86         // [0]   <- argumentStackPointer
    87         // [StackFrameSize = N + 1]
    88         // [Arg0] <- argumentStackPointer - 2 - 0
    89         // [Arg1] <- argumentStackPointer - 2 - 1
    90         // [...]
    91         // [ArgN] <- argumentStackPointer - 2 - N
    92         // <Begin of stack frame>
    93         return argumentStack[argumentStackPointer - index - 2];
    94       }
    95     }
    96     private class OpCodes {
    97       public const byte Add = 1;
    98       public const byte Sub = 2;
    99       public const byte Mul = 3;
    100       public const byte Div = 4;
    101 
    102       public const byte Sin = 5;
    103       public const byte Cos = 6;
    104       public const byte Tan = 7;
    105 
    106       public const byte Log = 8;
    107       public const byte Exp = 9;
    108 
    109       public const byte IfThenElse = 10;
    110 
    111       public const byte GT = 11;
    112       public const byte LT = 12;
    113 
    114       public const byte AND = 13;
    115       public const byte OR = 14;
    116       public const byte NOT = 15;
    117 
    118 
    119       public const byte Average = 16;
    120 
    121       public const byte Call = 17;
    122 
    123       public const byte Variable = 18;
    124       public const byte LagVariable = 19;
    125       public const byte Constant = 20;
    126       public const byte Arg = 21;
    127 
    128       public const byte Power = 22;
    129       public const byte Root = 23;
    130       public const byte TimeLag = 24;
    131       public const byte Integral = 25;
    132       public const byte Derivative = 26;
    133 
    134       public const byte VariableCondition = 27;
    135     }
    136     #endregion
    137 
    138     private Dictionary<Type, byte> symbolToOpcode = new Dictionary<Type, byte>() {
    139       { typeof(Addition), OpCodes.Add },
    140       { typeof(Subtraction), OpCodes.Sub },
    141       { typeof(Multiplication), OpCodes.Mul },
    142       { typeof(Division), OpCodes.Div },
    143       { typeof(Sine), OpCodes.Sin },
    144       { typeof(Cosine), OpCodes.Cos },
    145       { typeof(Tangent), OpCodes.Tan },
    146       { typeof(Logarithm), OpCodes.Log },
    147       { typeof(Exponential), OpCodes.Exp },
    148       { typeof(IfThenElse), OpCodes.IfThenElse },
    149       { typeof(GreaterThan), OpCodes.GT },
    150       { typeof(LessThan), OpCodes.LT },
    151       { typeof(And), OpCodes.AND },
    152       { typeof(Or), OpCodes.OR },
    153       { typeof(Not), OpCodes.NOT},
    154       { typeof(Average), OpCodes.Average},
    155       { typeof(InvokeFunction), OpCodes.Call },
    156       { typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Variable), OpCodes.Variable },
    157       { typeof(LaggedVariable), OpCodes.LagVariable },
    158       { typeof(Constant), OpCodes.Constant },
    159       { typeof(Argument), OpCodes.Arg },
    160       { typeof(Power),OpCodes.Power},
    161       { typeof(Root),OpCodes.Root},
    162       { typeof(TimeLag), OpCodes.TimeLag},
    163       { typeof(Integral), OpCodes.Integral},
    164       { typeof(Derivative), OpCodes.Derivative},
    165       { typeof(VariableCondition),OpCodes.VariableCondition}
    166     };
    167 
    168     public override bool CanChangeName {
    169       get { return false; }
    170     }
    171     public override bool CanChangeDescription {
    172       get { return false; }
     108      if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
     109        throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
    173110    }
    174111
    175     #region parameter properties
    176     public IValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
    177       get { return (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
    178     }
    179     #endregion
    180 
    181     #region properties
    182     public BoolValue CheckExpressionsWithIntervalArithmetic {
    183       get { return CheckExpressionsWithIntervalArithmeticParameter.Value; }
    184       set { CheckExpressionsWithIntervalArithmeticParameter.Value = value; }
    185     }
    186 
    187     [Storable]
    188     private readonly string[] targetVariables;
    189     #endregion
    190 
    191 
    192     [StorableConstructor]
    193     private SymbolicTimeSeriesPrognosisInterpreter(bool deserializing) : base(deserializing) { }
    194     private SymbolicTimeSeriesPrognosisInterpreter(SymbolicTimeSeriesPrognosisInterpreter original, Cloner cloner)
    195       : base(original, cloner) {
    196       this.targetVariables = original.targetVariables;
    197     }
    198     public override IDeepCloneable Clone(Cloner cloner) {
    199       return new SymbolicTimeSeriesPrognosisInterpreter(this, cloner);
    200     }
    201 
    202     public SymbolicTimeSeriesPrognosisInterpreter(string[] targetVariables)
    203       : base("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
    204       Parameters.Add(new ValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
    205       this.targetVariables = targetVariables;
    206     }
    207 
    208     public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows) {
    209       throw new NotSupportedException();
    210     }
    211 
    212     // for each row for each target variable one prognosis (=enumerable of future values)
    213     public IEnumerable<IEnumerable<IEnumerable<double>>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows, int horizon) {
    214       if (CheckExpressionsWithIntervalArithmetic.Value)
    215         throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
    216       var compiler = new SymbolicExpressionTreeCompiler();
    217       Instruction[] code = compiler.Compile(tree, MapSymbolToOpCode);
     112    private InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, Dataset dataset, double[] targetVariableCache) {
     113      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
    218114      int necessaryArgStackSize = 0;
    219       for (int i = 0; i < code.Length; i++) {
    220         Instruction instr = code[i];
     115      foreach (Instruction instr in code) {
    221116        if (instr.opCode == OpCodes.Variable) {
    222           var variableTreeNode = instr.dynamicNode as VariableTreeNode;
    223           instr.iArg0 = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
    224           code[i] = instr;
     117          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
     118          if (variableTreeNode.VariableName == TargetVariable)
     119            instr.iArg0 = targetVariableCache;
     120          else
     121            instr.iArg0 = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
    225122        } else if (instr.opCode == OpCodes.LagVariable) {
    226           var laggedVariableTreeNode = instr.dynamicNode as LaggedVariableTreeNode;
     123          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
    227124          instr.iArg0 = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
    228           code[i] = instr;
    229125        } else if (instr.opCode == OpCodes.VariableCondition) {
    230           var variableConditionTreeNode = instr.dynamicNode as VariableConditionTreeNode;
     126          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
    231127          instr.iArg0 = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
    232128        } else if (instr.opCode == OpCodes.Call) {
     
    234130        }
    235131      }
    236       var state = new InterpreterState(code, necessaryArgStackSize);
    237132
    238       int nComponents = tree.Root.GetSubtree(0).SubtreeCount;
    239       // produce a n-step forecast for each target variable for all rows
    240       var cachedPrognosedValues = new Dictionary<string, double[]>();
    241       foreach (var targetVariable in targetVariables)
    242         cachedPrognosedValues[targetVariable] = new double[horizon];
    243       foreach (var rowEnum in rows) {
    244         int row = rowEnum;
    245         List<double[]> vProgs = new List<double[]>();
    246         foreach (var horizonRow in Enumerable.Range(row, horizon)) {
    247           int localRow = horizonRow; // create a local variable for the ref parameter
    248           var vPrognosis = from i in Enumerable.Range(0, nComponents)
    249                            select Evaluate(dataset, ref localRow, row - 1, state, cachedPrognosedValues);
    250 
    251           var vPrognosisArr = vPrognosis.ToArray();
    252           vProgs.Add(vPrognosisArr);
    253           // set cachedValues for prognosis of future values
    254           for (int i = 0; i < vPrognosisArr.Length; i++)
    255             cachedPrognosedValues[targetVariables[i]][horizonRow - row] = vPrognosisArr[i];
    256 
    257           state.Reset();
    258         }
    259 
    260         yield return from component in Enumerable.Range(0, nComponents)
    261                      select from prognosisStep in Enumerable.Range(0, vProgs.Count)
    262                             select vProgs[prognosisStep][component];
    263       }
    264     }
    265 
    266     private double Evaluate(Dataset dataset, ref int row, int lastObservedRow, InterpreterState state, Dictionary<string, double[]> cachedPrognosedValues) {
    267       Instruction currentInstr = state.NextInstruction();
    268       switch (currentInstr.opCode) {
    269         case OpCodes.Add: {
    270             double s = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    271             for (int i = 1; i < currentInstr.nArguments; i++) {
    272               s += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    273             }
    274             return s;
    275           }
    276         case OpCodes.Sub: {
    277             double s = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    278             for (int i = 1; i < currentInstr.nArguments; i++) {
    279               s -= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    280             }
    281             if (currentInstr.nArguments == 1) s = -s;
    282             return s;
    283           }
    284         case OpCodes.Mul: {
    285             double p = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    286             for (int i = 1; i < currentInstr.nArguments; i++) {
    287               p *= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    288             }
    289             return p;
    290           }
    291         case OpCodes.Div: {
    292             double p = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    293             for (int i = 1; i < currentInstr.nArguments; i++) {
    294               p /= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    295             }
    296             if (currentInstr.nArguments == 1) p = 1.0 / p;
    297             return p;
    298           }
    299         case OpCodes.Average: {
    300             double sum = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    301             for (int i = 1; i < currentInstr.nArguments; i++) {
    302               sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    303             }
    304             return sum / currentInstr.nArguments;
    305           }
    306         case OpCodes.Cos: {
    307             return Math.Cos(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    308           }
    309         case OpCodes.Sin: {
    310             return Math.Sin(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    311           }
    312         case OpCodes.Tan: {
    313             return Math.Tan(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    314           }
    315         case OpCodes.Power: {
    316             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    317             double y = Math.Round(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    318             return Math.Pow(x, y);
    319           }
    320         case OpCodes.Root: {
    321             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    322             double y = Math.Round(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    323             return Math.Pow(x, 1 / y);
    324           }
    325         case OpCodes.Exp: {
    326             return Math.Exp(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    327           }
    328         case OpCodes.Log: {
    329             return Math.Log(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
    330           }
    331         case OpCodes.IfThenElse: {
    332             double condition = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    333             double result;
    334             if (condition > 0.0) {
    335               result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); SkipInstructions(state);
    336             } else {
    337               SkipInstructions(state); result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    338             }
    339             return result;
    340           }
    341         case OpCodes.AND: {
    342             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    343             for (int i = 1; i < currentInstr.nArguments; i++) {
    344               if (result > 0.0) result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    345               else {
    346                 SkipInstructions(state);
    347               }
    348             }
    349             return result > 0.0 ? 1.0 : -1.0;
    350           }
    351         case OpCodes.OR: {
    352             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    353             for (int i = 1; i < currentInstr.nArguments; i++) {
    354               if (result <= 0.0) result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    355               else {
    356                 SkipInstructions(state);
    357               }
    358             }
    359             return result > 0.0 ? 1.0 : -1.0;
    360           }
    361         case OpCodes.NOT: {
    362             return Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues) > 0.0 ? -1.0 : 1.0;
    363           }
    364         case OpCodes.GT: {
    365             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    366             double y = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    367             if (x > y) return 1.0;
    368             else return -1.0;
    369           }
    370         case OpCodes.LT: {
    371             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    372             double y = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    373             if (x < y) return 1.0;
    374             else return -1.0;
    375           }
    376         case OpCodes.TimeLag: {
    377             var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
    378             row += timeLagTreeNode.Lag;
    379             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    380             row -= timeLagTreeNode.Lag;
    381             return result;
    382           }
    383         case OpCodes.Integral: {
    384             int savedPc = state.ProgramCounter;
    385             var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
    386             double sum = 0.0;
    387             for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
    388               row += Math.Sign(timeLagTreeNode.Lag);
    389               sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    390               state.ProgramCounter = savedPc;
    391             }
    392             row -= timeLagTreeNode.Lag;
    393             sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    394             return sum;
    395           }
    396 
    397         //mkommend: derivate calculation taken from:
    398         //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
    399         //one sided smooth differentiatior, N = 4
    400         // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
    401         case OpCodes.Derivative: {
    402             int savedPc = state.ProgramCounter;
    403             double f_0 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row--;
    404             state.ProgramCounter = savedPc;
    405             double f_1 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row -= 2;
    406             state.ProgramCounter = savedPc;
    407             double f_3 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row--;
    408             state.ProgramCounter = savedPc;
    409             double f_4 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    410             row += 4;
    411 
    412             return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
    413           }
    414         case OpCodes.Call: {
    415             // evaluate sub-trees
    416             double[] argValues = new double[currentInstr.nArguments];
    417             for (int i = 0; i < currentInstr.nArguments; i++) {
    418               argValues[i] = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    419             }
    420             // push on argument values on stack
    421             state.CreateStackFrame(argValues);
    422 
    423             // save the pc
    424             int savedPc = state.ProgramCounter;
    425             // set pc to start of function 
    426             state.ProgramCounter = (ushort)currentInstr.iArg0;
    427             // evaluate the function
    428             double v = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    429 
    430             // delete the stack frame
    431             state.RemoveStackFrame();
    432 
    433             // restore the pc => evaluation will continue at point after my subtrees 
    434             state.ProgramCounter = savedPc;
    435             return v;
    436           }
    437         case OpCodes.Arg: {
    438             return state.GetStackFrameValue((ushort)currentInstr.iArg0);
    439           }
    440         case OpCodes.Variable: {
    441             if (row < 0 || row >= dataset.Rows)
    442               return double.NaN;
    443             var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
    444             if (row <= lastObservedRow) return ((IList<double>)currentInstr.iArg0)[row] * variableTreeNode.Weight;
    445             else return cachedPrognosedValues[variableTreeNode.VariableName][row - lastObservedRow - 1] * variableTreeNode.Weight;
    446           }
    447         case OpCodes.LagVariable: {
    448             var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
    449             int actualRow = row + laggedVariableTreeNode.Lag;
    450             if (actualRow < 0 || actualRow >= dataset.Rows)
    451               return double.NaN;
    452             if (actualRow <= lastObservedRow) return ((IList<double>)currentInstr.iArg0)[actualRow] * laggedVariableTreeNode.Weight;
    453             else return cachedPrognosedValues[laggedVariableTreeNode.VariableName][actualRow - lastObservedRow - 1] * laggedVariableTreeNode.Weight;
    454           }
    455         case OpCodes.Constant: {
    456             var constTreeNode = currentInstr.dynamicNode as ConstantTreeNode;
    457             return constTreeNode.Value;
    458           }
    459 
    460         //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
    461         //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
    462         case OpCodes.VariableCondition: {
    463             if (row < 0 || row >= dataset.Rows)
    464               return double.NaN;
    465             var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
    466             double variableValue;
    467             if (row <= lastObservedRow)
    468               variableValue = ((IList<double>)currentInstr.iArg0)[row];
    469             else
    470               variableValue = cachedPrognosedValues[variableConditionTreeNode.VariableName][row - lastObservedRow - 1];
    471 
    472             double x = variableValue - variableConditionTreeNode.Threshold;
    473             double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
    474 
    475             double trueBranch = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    476             double falseBranch = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    477 
    478             return trueBranch * p + falseBranch * (1 - p);
    479           }
    480         default: throw new NotSupportedException();
    481       }
    482     }
    483 
    484     private byte MapSymbolToOpCode(ISymbolicExpressionTreeNode treeNode) {
    485       if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
    486         return symbolToOpcode[treeNode.Symbol.GetType()];
    487       else
    488         throw new NotSupportedException("Symbol: " + treeNode.Symbol);
    489     }
    490 
    491     // skips a whole branch
    492     private void SkipInstructions(InterpreterState state) {
    493       int i = 1;
    494       while (i > 0) {
    495         i += state.NextInstruction().nArguments;
    496         i--;
    497       }
     133      return new InterpreterState(code, necessaryArgStackSize);
    498134    }
    499135  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SymbolicTimeSeriesPrognosisModel.cs

    r7183 r7989  
    2020#endregion
    2121
    22 using System;
    2322using System.Collections.Generic;
    2423using System.Drawing;
     
    6463    #endregion
    6564
    66     [Storable]
    67     private string[] targetVariables;
    68 
    69 
    7065    [StorableConstructor]
    7166    protected SymbolicTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
     
    7469      this.symbolicExpressionTree = cloner.Clone(original.symbolicExpressionTree);
    7570      this.interpreter = cloner.Clone(original.interpreter);
    76       this.targetVariables = new string[original.targetVariables.Length];
    77       Array.Copy(original.targetVariables, this.targetVariables, this.targetVariables.Length);
    7871      this.lowerEstimationLimit = original.lowerEstimationLimit;
    7972      this.upperEstimationLimit = original.upperEstimationLimit;
    8073    }
    81     public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, IEnumerable<string> targetVariables, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue)
     74    public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue)
    8275      : base() {
    8376      this.name = ItemName;
    8477      this.description = ItemDescription;
    8578      this.symbolicExpressionTree = tree;
    86       this.interpreter = interpreter; this.targetVariables = targetVariables.ToArray();
     79      this.interpreter = interpreter;
    8780      this.lowerEstimationLimit = lowerLimit;
    8881      this.upperEstimationLimit = upperLimit;
     
    9386    }
    9487
    95     public IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon) {
    96       var enumerator =
    97         Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, targetVariables, rows, horizon).
    98           GetEnumerator();
    99       foreach (var r in rows) {
    100         var l = new List<double[]>();
    101         for (int h = 0; h < horizon; h++) {
    102           double[] components = new double[targetVariables.Length];
    103           for (int c = 0; c < components.Length; c++) {
    104             enumerator.MoveNext();
    105             components[c] = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, enumerator.Current));
    106           }
    107           l.Add(components);
    108         }
    109         yield return l;
    110       }
     88    public IEnumerable<IEnumerable<double>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon) {
     89      var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows, horizon);
     90      return estimatedValues.Select(predictionPerRow => predictionPerRow.LimitToRange(lowerEstimationLimit, upperEstimationLimit));
    11191    }
    11292
     
    120100    public static void Scale(SymbolicTimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData) {
    121101      var dataset = problemData.Dataset;
    122       var targetVariables = problemData.TargetVariables.ToArray();
     102      var targetVariable = problemData.TargetVariable;
    123103      var rows = problemData.TrainingIndizes;
    124       var estimatedValuesEnumerator = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset,
    125                                                                               targetVariables,
    126                                                                               rows).GetEnumerator();
    127       var scalingParameterCalculators =
    128         problemData.TargetVariables.Select(v => new OnlineLinearScalingParameterCalculator()).ToArray();
    129       var targetValuesEnumerator = problemData.Dataset.GetVectorEnumerable(targetVariables, rows).GetEnumerator();
     104      var estimatedValuesEnumerator = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
     105      var targetValuesEnumerator = problemData.Dataset.GetDoubleValues(targetVariable, rows);
    130106
    131       var more = targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext();
    132       // foreach row
    133       while (more) {
    134         // foreach component
    135         for (int i = 0; i < targetVariables.Length; i++) {
    136           scalingParameterCalculators[i].Add(estimatedValuesEnumerator.Current, targetValuesEnumerator.Current);
    137           more = estimatedValuesEnumerator.MoveNext() & targetValuesEnumerator.MoveNext();
     107      double alpha, beta;
     108      OnlineCalculatorError error;
     109      OnlineLinearScalingParameterCalculator.Calculate(estimatedValuesEnumerator, targetValuesEnumerator, out alpha, out beta, out error);
     110      if (error != OnlineCalculatorError.None) return;
     111
     112      ConstantTreeNode alphaTreeNode = null;
     113      ConstantTreeNode betaTreeNode = null;
     114      // check if model has been scaled previously by analyzing the structure of the tree
     115      var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
     116      if (startNode.GetSubtree(0).Symbol is Addition) {
     117        var addNode = startNode.GetSubtree(0);
     118        if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
     119          alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
     120          var mulNode = addNode.GetSubtree(0);
     121          if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
     122            betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
     123          }
    138124        }
    139125      }
    140 
    141       for (int i = 0; i < targetVariables.Count(); i++) {
    142         if (scalingParameterCalculators[i].ErrorState != OnlineCalculatorError.None) continue;
    143         double alpha = scalingParameterCalculators[i].Alpha;
    144         double beta = scalingParameterCalculators[i].Beta;
    145         ConstantTreeNode alphaTreeNode = null;
    146         ConstantTreeNode betaTreeNode = null;
    147         // check if model has been scaled previously by analyzing the structure of the tree
    148         var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
    149         if (startNode.GetSubtree(i).Symbol is Addition) {
    150           var addNode = startNode.GetSubtree(i);
    151           if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication &&
    152               addNode.GetSubtree(1).Symbol is Constant) {
    153             alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
    154             var mulNode = addNode.GetSubtree(0);
    155             if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
    156               betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
    157             }
    158           }
    159         }
    160         // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
    161         if (alphaTreeNode != null && betaTreeNode != null) {
    162           betaTreeNode.Value *= beta;
    163           alphaTreeNode.Value *= beta;
    164           alphaTreeNode.Value += alpha;
    165         } else {
    166           var mainBranch = startNode.GetSubtree(i);
    167           startNode.RemoveSubtree(i);
    168           var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
    169           startNode.InsertSubtree(i, scaledMainBranch);
    170         }
    171       } // foreach
     126      // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
     127      if (alphaTreeNode != null && betaTreeNode != null) {
     128        betaTreeNode.Value *= beta;
     129        alphaTreeNode.Value *= beta;
     130        alphaTreeNode.Value += alpha;
     131      } else {
     132        var mainBranch = startNode.GetSubtree(0);
     133        startNode.RemoveSubtree(0);
     134        var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
     135        startNode.AddSubtree(scaledMainBranch);
     136      }
    172137    }
    173138
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisEvaluator.cs

    r7615 r7989  
    9696    [StorableHook(HookType.AfterDeserialization)]
    9797    private void AfterDeserialization() {
    98       if(!Parameters.ContainsKey(ValidRowIndicatorParameterName))
     98      if (!Parameters.ContainsKey(ValidRowIndicatorParameterName))
    9999        Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional)."));
    100100    }
     
    104104    }
    105105
    106     protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows)
    107     {
     106    protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows) {
    108107
    109108      IEnumerable<int> rows;
     
    112111      int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
    113112      int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
    114 
    115113      if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
    116114
     
    125123
    126124      rows = rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
    127      
    128       if(ValidRowIndicatorParameter.ActualValue != null)
    129       {
     125      if (ValidRowIndicatorParameter.ActualValue != null) {
    130126        string indicatorVar = ValidRowIndicatorParameter.ActualValue.Value;
    131127        var problemData = ProblemDataParameter.ActualValue;
    132128        var indicatorRow = problemData.Dataset.GetReadOnlyDoubleValues(indicatorVar);
    133         rows = rows.Where(r=>!indicatorRow[r].IsAlmost(0.0));
     129        rows = rows.Where(r => !indicatorRow[r].IsAlmost(0.0));
    134130      }
    135131      return rows;
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj

    r7930 r7989  
    150150    <Compile Include="Creators\SymbolicDataAnalysisExpressionRampedHalfAndHalfTreeCreator.cs" />
    151151    <Compile Include="Creators\SymbolicDataAnalysisExpressionTreeCreator.cs" />
    152     <Compile Include="Interfaces\ISymbolicTimeSeriesPrognogisExpressionTreeInterpreter.cs" />
    153152    <Compile Include="Crossovers\MultiSymbolicDataAnalysisExpressionCrossover.cs" />
    154153    <Compile Include="Crossovers\SymbolicDataAnalysisExpressionContextAwareCrossover.cs" />
     
    178177    <Compile Include="Interfaces\ISymbolicDataAnalysisAnalyzer.cs" />
    179178    <Compile Include="SymbolicDataAnalysisSingleObjectiveProblem.cs" />
    180     <Compile Include="Interpreter\old_SymbolicDataAnalysisExpressionTreeInterpreter.cs" />
    181179    <Compile Include="SymbolicDataAnalysisExpressionTreeSimplifier.cs" />
    182180    <Compile Include="SymbolicDataAnalysisProblem.cs" />
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interfaces/ISymbolicDataAnalysisExpressionTreeInterpreter.cs

    r7615 r7989  
    2626
    2727namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
    28   public interface ISymbolicDataAnalysisExpressionTreeInterpreter : ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, IStatefulItem {
     28  public interface ISymbolicDataAnalysisExpressionTreeInterpreter : INamedItem, IStatefulItem {
    2929    IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows);
    3030    IntValue EvaluatedSolutions { get; set; }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/InterpreterState.cs

    r7930 r7989  
    2323
    2424namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
    25   internal class InterpreterState {
     25  public class InterpreterState {
    2626    private double[] argumentStack;
    2727    private int argumentStackPointer;
     
    3232      set { pc = value; }
    3333    }
    34     internal InterpreterState(Instruction[] code, int argumentStackSize) {
     34    public InterpreterState(Instruction[] code, int argumentStackSize) {
    3535      this.code = code;
    3636      this.pc = 0;
     
    4141    }
    4242
    43     internal void Reset() {
     43    public void Reset() {
    4444      this.pc = 0;
    4545      this.argumentStackPointer = 0;
    4646    }
    4747
    48     internal Instruction NextInstruction() {
     48    public Instruction NextInstruction() {
    4949      return code[pc++];
    5050    }
    5151    // skips a whole branch
    52     internal void SkipInstructions() {
     52    public void SkipInstructions() {
    5353      int i = 1;
    5454      while (i > 0) {
     
    6565    }
    6666
    67     internal void CreateStackFrame(double[] argValues) {
     67    public void CreateStackFrame(double[] argValues) {
    6868      // push in reverse order to make indexing easier
    6969      for (int i = argValues.Length - 1; i >= 0; i--) {
     
    7373    }
    7474
    75     internal void RemoveStackFrame() {
     75    public void RemoveStackFrame() {
    7676      int size = (int)Pop();
    7777      argumentStackPointer -= size;
    7878    }
    7979
    80     internal double GetStackFrameValue(ushort index) {
     80    public double GetStackFrameValue(ushort index) {
    8181      // layout of stack:
    8282      // [0]   <- argumentStackPointer
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/OpCodes.cs

    r7930 r7989  
    2525
    2626namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
    27   internal static class OpCodes {
     27  public static class OpCodes {
    2828    public const byte Add = 1;
    2929    public const byte Sub = 2;
     
    132132    public static byte MapSymbolToOpCode(ISymbolicExpressionTreeNode treeNode) {
    133133      byte opCode;
    134       if (symbolToOpcode.TryGetValue(treeNode.Symbol.GetType(), out opCode))
    135         return opCode;
    136       else
    137         throw new NotSupportedException("Symbol: " + treeNode.Symbol);
     134      if (symbolToOpcode.TryGetValue(treeNode.Symbol.GetType(), out opCode)) return opCode;
     135      else throw new NotSupportedException("Symbol: " + treeNode.Symbol);
    138136    }
    139137  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs

    r7930 r7989  
    3232  [StorableClass]
    3333  [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
    34   public sealed class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
    35     ISymbolicDataAnalysisExpressionTreeInterpreter, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter {
     34  public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter {
    3635    private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
    3736    private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
     
    6766
    6867    [StorableConstructor]
    69     private SymbolicDataAnalysisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { }
    70     private SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { }
     68    protected SymbolicDataAnalysisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { }
     69    protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { }
    7170    public override IDeepCloneable Clone(Cloner cloner) {
    7271      return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
     
    7978    }
    8079
     80    protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
     81      : base(name, description) {
     82      Parameters.Add(new ValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
     83      Parameters.Add(new ValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
     84    }
     85
    8186    [StorableHook(HookType.AfterDeserialization)]
    8287    private void AfterDeserialization() {
     
    95100
    96101    public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable<int> rows) {
    97       return GetSymbolicExpressionTreeValues(tree, dataset, new string[] { "#NOTHING#" }, rows);
    98     }
    99 
    100     public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, string[] targetVariables, IEnumerable<int> rows) {
    101       return GetSymbolicExpressionTreeValues(tree, dataset, targetVariables, rows, 1);
    102     }
    103 
    104     // for each row for each horizon for each target variable one value
    105     public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, string[] targetVariables, IEnumerable<int> rows, int horizon) {
    106102      if (CheckExpressionsWithIntervalArithmetic.Value)
    107103        throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
    108104
    109105      EvaluatedSolutions.Value++; // increment the evaluated solutions counter
    110       var state = PrepareInterpreterState(tree, dataset, targetVariables[0]);
    111 
    112       // produce a n-step forecast for each target variable for all rows
    113       var cachedPrognosedValues = new Dictionary<string, double[]>();
    114       //foreach (var targetVariable in targetVariables)
    115       //  cachedPrognosedValues[targetVariable] = new double[horizon];
     106      var state = PrepareInterpreterState(tree, dataset);
     107
    116108      foreach (var rowEnum in rows) {
    117109        int row = rowEnum;
    118         for (int localRow = row; localRow < row + horizon; localRow++) {
    119           //int localRow = horizonRow; // create a local variable for the ref parameter
    120           yield return Evaluate(dataset, ref localRow, row - 1, state, cachedPrognosedValues);
    121           //cachedPrognosedValues[targetVariables[c]][horizonRow - row] = prog;
    122           state.Reset();
    123         }
     110        yield return Evaluate(dataset, ref row, state);
     111        state.Reset();
    124112      }
    125113    }
    126114
    127     private InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, Dataset dataset, string targetVariable) {
     115    private InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, Dataset dataset) {
    128116      Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
    129117      int necessaryArgStackSize = 0;
    130       for (int i = 0; i < code.Length; i++) {
    131         Instruction instr = code[i];
     118      foreach (Instruction instr in code) {
    132119        if (instr.opCode == OpCodes.Variable) {
    133120          var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
    134121          instr.iArg0 = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
    135           code[i] = instr;
    136122        } else if (instr.opCode == OpCodes.LagVariable) {
    137123          var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
    138124          instr.iArg0 = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
    139           code[i] = instr;
    140125        } else if (instr.opCode == OpCodes.VariableCondition) {
    141126          var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
     
    148133    }
    149134
    150     private double Evaluate(Dataset dataset, ref int row, int lastObservedRow, InterpreterState state, Dictionary<string, double[]> cachedPrognosedValues) {
     135    protected virtual double Evaluate(Dataset dataset, ref int row, InterpreterState state) {
    151136      Instruction currentInstr = state.NextInstruction();
    152137      switch (currentInstr.opCode) {
    153138        case OpCodes.Add: {
    154             double s = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    155             for (int i = 1; i < currentInstr.nArguments; i++) {
    156               s += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     139            double s = Evaluate(dataset, ref row, state);
     140            for (int i = 1; i < currentInstr.nArguments; i++) {
     141              s += Evaluate(dataset, ref row, state);
    157142            }
    158143            return s;
    159144          }
    160145        case OpCodes.Sub: {
    161             double s = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    162             for (int i = 1; i < currentInstr.nArguments; i++) {
    163               s -= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     146            double s = Evaluate(dataset, ref row, state);
     147            for (int i = 1; i < currentInstr.nArguments; i++) {
     148              s -= Evaluate(dataset, ref row, state);
    164149            }
    165150            if (currentInstr.nArguments == 1) s = -s;
     
    167152          }
    168153        case OpCodes.Mul: {
    169             double p = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    170             for (int i = 1; i < currentInstr.nArguments; i++) {
    171               p *= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     154            double p = Evaluate(dataset, ref row, state);
     155            for (int i = 1; i < currentInstr.nArguments; i++) {
     156              p *= Evaluate(dataset, ref row, state);
    172157            }
    173158            return p;
    174159          }
    175160        case OpCodes.Div: {
    176             double p = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    177             for (int i = 1; i < currentInstr.nArguments; i++) {
    178               p /= Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     161            double p = Evaluate(dataset, ref row, state);
     162            for (int i = 1; i < currentInstr.nArguments; i++) {
     163              p /= Evaluate(dataset, ref row, state);
    179164            }
    180165            if (currentInstr.nArguments == 1) p = 1.0 / p;
     
    182167          }
    183168        case OpCodes.Average: {
    184             double sum = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    185             for (int i = 1; i < currentInstr.nArguments; i++) {
    186               sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     169            double sum = Evaluate(dataset, ref row, state);
     170            for (int i = 1; i < currentInstr.nArguments; i++) {
     171              sum += Evaluate(dataset, ref row, state);
    187172            }
    188173            return sum / currentInstr.nArguments;
    189174          }
    190175        case OpCodes.Cos: {
    191             return Math.Cos(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     176            return Math.Cos(Evaluate(dataset, ref row, state));
    192177          }
    193178        case OpCodes.Sin: {
    194             return Math.Sin(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     179            return Math.Sin(Evaluate(dataset, ref row, state));
    195180          }
    196181        case OpCodes.Tan: {
    197             return Math.Tan(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     182            return Math.Tan(Evaluate(dataset, ref row, state));
    198183          }
    199184        case OpCodes.Square: {
    200             return Math.Pow(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues), 2);
     185            return Math.Pow(Evaluate(dataset, ref row, state), 2);
    201186          }
    202187        case OpCodes.Power: {
    203             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    204             double y = Math.Round(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     188            double x = Evaluate(dataset, ref row, state);
     189            double y = Math.Round(Evaluate(dataset, ref row, state));
    205190            return Math.Pow(x, y);
    206191          }
    207192        case OpCodes.SquareRoot: {
    208             return Math.Sqrt(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     193            return Math.Sqrt(Evaluate(dataset, ref row, state));
    209194          }
    210195        case OpCodes.Root: {
    211             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    212             double y = Math.Round(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     196            double x = Evaluate(dataset, ref row, state);
     197            double y = Math.Round(Evaluate(dataset, ref row, state));
    213198            return Math.Pow(x, 1 / y);
    214199          }
    215200        case OpCodes.Exp: {
    216             return Math.Exp(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     201            return Math.Exp(Evaluate(dataset, ref row, state));
    217202          }
    218203        case OpCodes.Log: {
    219             return Math.Log(Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues));
     204            return Math.Log(Evaluate(dataset, ref row, state));
    220205          }
    221206        case OpCodes.Gamma: {
    222             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     207            var x = Evaluate(dataset, ref row, state);
    223208            if (double.IsNaN(x)) return double.NaN;
    224209            else return alglib.gammafunction(x);
    225210          }
    226211        case OpCodes.Psi: {
    227             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     212            var x = Evaluate(dataset, ref row, state);
    228213            if (double.IsNaN(x)) return double.NaN;
    229214            else if (x.IsAlmost(0.0)) return double.NaN;
     
    232217          }
    233218        case OpCodes.Dawson: {
    234             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     219            var x = Evaluate(dataset, ref row, state);
    235220            if (double.IsNaN(x)) return double.NaN;
    236221            return alglib.dawsonintegral(x);
    237222          }
    238223        case OpCodes.ExponentialIntegralEi: {
    239             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     224            var x = Evaluate(dataset, ref row, state);
    240225            if (double.IsNaN(x)) return double.NaN;
    241226            return alglib.exponentialintegralei(x);
     
    243228        case OpCodes.SineIntegral: {
    244229            double si, ci;
    245             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     230            var x = Evaluate(dataset, ref row, state);
    246231            if (double.IsNaN(x)) return double.NaN;
    247232            else {
     
    252237        case OpCodes.CosineIntegral: {
    253238            double si, ci;
    254             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     239            var x = Evaluate(dataset, ref row, state);
    255240            if (double.IsNaN(x)) return double.NaN;
    256241            else {
     
    261246        case OpCodes.HyperbolicSineIntegral: {
    262247            double shi, chi;
    263             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     248            var x = Evaluate(dataset, ref row, state);
    264249            if (double.IsNaN(x)) return double.NaN;
    265250            else {
     
    270255        case OpCodes.HyperbolicCosineIntegral: {
    271256            double shi, chi;
    272             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     257            var x = Evaluate(dataset, ref row, state);
    273258            if (double.IsNaN(x)) return double.NaN;
    274259            else {
     
    279264        case OpCodes.FresnelCosineIntegral: {
    280265            double c = 0, s = 0;
    281             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     266            var x = Evaluate(dataset, ref row, state);
    282267            if (double.IsNaN(x)) return double.NaN;
    283268            else {
     
    288273        case OpCodes.FresnelSineIntegral: {
    289274            double c = 0, s = 0;
    290             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     275            var x = Evaluate(dataset, ref row, state);
    291276            if (double.IsNaN(x)) return double.NaN;
    292277            else {
     
    297282        case OpCodes.AiryA: {
    298283            double ai, aip, bi, bip;
    299             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     284            var x = Evaluate(dataset, ref row, state);
    300285            if (double.IsNaN(x)) return double.NaN;
    301286            else {
     
    306291        case OpCodes.AiryB: {
    307292            double ai, aip, bi, bip;
    308             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     293            var x = Evaluate(dataset, ref row, state);
    309294            if (double.IsNaN(x)) return double.NaN;
    310295            else {
     
    314299          }
    315300        case OpCodes.Norm: {
    316             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     301            var x = Evaluate(dataset, ref row, state);
    317302            if (double.IsNaN(x)) return double.NaN;
    318303            else return alglib.normaldistribution(x);
    319304          }
    320305        case OpCodes.Erf: {
    321             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     306            var x = Evaluate(dataset, ref row, state);
    322307            if (double.IsNaN(x)) return double.NaN;
    323308            else return alglib.errorfunction(x);
    324309          }
    325310        case OpCodes.Bessel: {
    326             var x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     311            var x = Evaluate(dataset, ref row, state);
    327312            if (double.IsNaN(x)) return double.NaN;
    328313            else return alglib.besseli0(x);
    329314          }
    330315        case OpCodes.IfThenElse: {
    331             double condition = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     316            double condition = Evaluate(dataset, ref row, state);
    332317            double result;
    333318            if (condition > 0.0) {
    334               result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); state.SkipInstructions();
     319              result = Evaluate(dataset, ref row, state); state.SkipInstructions();
    335320            } else {
    336               state.SkipInstructions(); result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     321              state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
    337322            }
    338323            return result;
    339324          }
    340325        case OpCodes.AND: {
    341             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    342             for (int i = 1; i < currentInstr.nArguments; i++) {
    343               if (result > 0.0) result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     326            double result = Evaluate(dataset, ref row, state);
     327            for (int i = 1; i < currentInstr.nArguments; i++) {
     328              if (result > 0.0) result = Evaluate(dataset, ref row, state);
    344329              else {
    345330                state.SkipInstructions();
     
    349334          }
    350335        case OpCodes.OR: {
    351             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    352             for (int i = 1; i < currentInstr.nArguments; i++) {
    353               if (result <= 0.0) result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     336            double result = Evaluate(dataset, ref row, state);
     337            for (int i = 1; i < currentInstr.nArguments; i++) {
     338              if (result <= 0.0) result = Evaluate(dataset, ref row, state);
    354339              else {
    355340                state.SkipInstructions();
     
    359344          }
    360345        case OpCodes.NOT: {
    361             return Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues) > 0.0 ? -1.0 : 1.0;
     346            return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
    362347          }
    363348        case OpCodes.GT: {
    364             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    365             double y = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     349            double x = Evaluate(dataset, ref row, state);
     350            double y = Evaluate(dataset, ref row, state);
    366351            if (x > y) return 1.0;
    367352            else return -1.0;
    368353          }
    369354        case OpCodes.LT: {
    370             double x = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    371             double y = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     355            double x = Evaluate(dataset, ref row, state);
     356            double y = Evaluate(dataset, ref row, state);
    372357            if (x < y) return 1.0;
    373358            else return -1.0;
     
    376361            var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
    377362            row += timeLagTreeNode.Lag;
    378             double result = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     363            double result = Evaluate(dataset, ref row, state);
    379364            row -= timeLagTreeNode.Lag;
    380365            return result;
     
    386371            for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
    387372              row += Math.Sign(timeLagTreeNode.Lag);
    388               sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     373              sum += Evaluate(dataset, ref row, state);
    389374              state.ProgramCounter = savedPc;
    390375            }
    391376            row -= timeLagTreeNode.Lag;
    392             sum += Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     377            sum += Evaluate(dataset, ref row, state);
    393378            return sum;
    394379          }
     
    400385        case OpCodes.Derivative: {
    401386            int savedPc = state.ProgramCounter;
    402             double f_0 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row--;
     387            double f_0 = Evaluate(dataset, ref row, state); row--;
    403388            state.ProgramCounter = savedPc;
    404             double f_1 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row -= 2;
     389            double f_1 = Evaluate(dataset, ref row, state); row -= 2;
    405390            state.ProgramCounter = savedPc;
    406             double f_3 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues); row--;
     391            double f_3 = Evaluate(dataset, ref row, state); row--;
    407392            state.ProgramCounter = savedPc;
    408             double f_4 = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     393            double f_4 = Evaluate(dataset, ref row, state);
    409394            row += 4;
    410395
     
    415400            double[] argValues = new double[currentInstr.nArguments];
    416401            for (int i = 0; i < currentInstr.nArguments; i++) {
    417               argValues[i] = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     402              argValues[i] = Evaluate(dataset, ref row, state);
    418403            }
    419404            // push on argument values on stack
     
    425410            state.ProgramCounter = (ushort)currentInstr.iArg0;
    426411            // evaluate the function
    427             double v = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     412            double v = Evaluate(dataset, ref row, state);
    428413
    429414            // delete the stack frame
     
    440425            if (row < 0 || row >= dataset.Rows) return double.NaN;
    441426            var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
    442             if (row <= lastObservedRow || !cachedPrognosedValues.ContainsKey(variableTreeNode.VariableName)) return ((IList<double>)currentInstr.iArg0)[row] * variableTreeNode.Weight;
    443             else return cachedPrognosedValues[variableTreeNode.VariableName][row - lastObservedRow - 1] * variableTreeNode.Weight;
     427            return ((IList<double>)currentInstr.iArg0)[row] * variableTreeNode.Weight;
    444428          }
    445429        case OpCodes.LagVariable: {
    446430            var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
    447431            int actualRow = row + laggedVariableTreeNode.Lag;
    448             if (actualRow < 0 || actualRow >= dataset.Rows)
    449               return double.NaN;
    450             if (actualRow <= lastObservedRow || !cachedPrognosedValues.ContainsKey(laggedVariableTreeNode.VariableName)) return ((IList<double>)currentInstr.iArg0)[actualRow] * laggedVariableTreeNode.Weight;
    451             else return cachedPrognosedValues[laggedVariableTreeNode.VariableName][actualRow - lastObservedRow - 1] * laggedVariableTreeNode.Weight;
     432            if (actualRow < 0 || actualRow >= dataset.Rows) return double.NaN;
     433            return ((IList<double>)currentInstr.iArg0)[actualRow] * laggedVariableTreeNode.Weight;
    452434          }
    453435        case OpCodes.Constant: {
     
    459441        //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
    460442        case OpCodes.VariableCondition: {
    461             if (row < 0 || row >= dataset.Rows)
    462               return double.NaN;
     443            if (row < 0 || row >= dataset.Rows) return double.NaN;
    463444            var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
    464             double variableValue;
    465             if (row <= lastObservedRow || !cachedPrognosedValues.ContainsKey(variableConditionTreeNode.VariableName))
    466               variableValue = ((IList<double>)currentInstr.iArg0)[row];
    467             else
    468               variableValue = cachedPrognosedValues[variableConditionTreeNode.VariableName][row - lastObservedRow - 1];
     445            double variableValue = ((IList<double>)currentInstr.iArg0)[row];
    469446
    470447            double x = variableValue - variableConditionTreeNode.Threshold;
    471448            double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
    472449
    473             double trueBranch = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
    474             double falseBranch = Evaluate(dataset, ref row, lastObservedRow, state, cachedPrognosedValues);
     450            double trueBranch = Evaluate(dataset, ref row, state);
     451            double falseBranch = Evaluate(dataset, ref row, state);
    475452
    476453            return trueBranch * p + falseBranch * (1 - p);
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Views/3.4/HeuristicLab.Problems.DataAnalysis.Views-3.4.csproj

    r7886 r7989  
    312312    </BootstrapperPackage>
    313313  </ItemGroup>
    314   <ItemGroup>
    315     <Folder Include="obj\" />
    316   </ItemGroup>
     314  <ItemGroup />
    317315  <ItemGroup>
    318316    <ProjectReference Include="..\..\HeuristicLab.Problems.DataAnalysis\3.4\HeuristicLab.Problems.DataAnalysis-3.4.csproj">
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Views/3.4/Solution Views/TimeSeriesPrognosisSolutionView.cs

    r7183 r7989  
    2222using System.Windows.Forms;
    2323using HeuristicLab.Core;
    24 using HeuristicLab.Data;
    2524using HeuristicLab.MainForm;
    2625
    2726namespace HeuristicLab.Problems.DataAnalysis.Views {
    2827  [View("TimeSeriesPrognosisnSolution View")]
    29   [Content(typeof(TimeSeriesPrognosisSolutionBase), false)]
     28  [Content(typeof(TimeSeriesPrognosisSolution), false)]
    3029  public partial class TimeSeriesPrognosisSolutionView : DataAnalysisSolutionView {
    3130    public TimeSeriesPrognosisSolutionView() {
     
    3332    }
    3433
    35     public new TimeSeriesPrognosisSolutionBase Content {
    36       get { return (TimeSeriesPrognosisSolutionBase)base.Content; }
     34    public new TimeSeriesPrognosisSolution Content {
     35      get { return (TimeSeriesPrognosisSolution)base.Content; }
    3736      set { base.Content = value; }
    3837    }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Views/3.4/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionLineChartView.cs

    r7463 r7989  
    5858    }
    5959
    60     private void UpdateTargetVariables() {
    61       // populate combobox
    62       targetVariableComboBox.Items.Clear();
    63       if (Content != null) {
    64         if (testPrognosisStart < Content.ProblemData.TestPartition.Start || testPrognosisStart >= Content.ProblemData.TestPartition.End) {
    65           testPrognosisStart = Content.ProblemData.TestPartition.Start;
    66         }
    67         foreach (var targetVariable in Content.ProblemData.TargetVariables)
    68           targetVariableComboBox.Items.Add(targetVariable);
    69 
    70         targetVariableComboBox.SelectedIndex = 0;
    71       }
    72     }
    73 
    74 
    75 
    7660    private void RedrawChart() {
    7761      this.chart.Series.Clear();
     
    7963        this.chart.ChartAreas[0].AxisX.Minimum = 0;
    8064        this.chart.ChartAreas[0].AxisX.Maximum = Content.ProblemData.Dataset.Rows - 1;
    81         string targetVariable = (string)targetVariableComboBox.SelectedItem;
    82         int varIndex = Content.ProblemData.TargetVariables.ToList().IndexOf(targetVariable);
     65        string targetVariable = Content.ProblemData.TargetVariable;
    8366
    8467        this.chart.Series.Add(TARGETVARIABLE_SERIES_NAME);
     
    9477          this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points
    9578            .DataBindXY(Content.ProblemData.TrainingIndizes.ToArray(),
    96                         Content.PrognosedTrainingValues.SelectMany(x => x).Skip(varIndex).TakeEvery(Content.ProblemData.TargetVariables.Count()).ToArray());
     79                        Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes.Take(1), Content.ProblemData.TrainingPartition.Size).SelectMany(x => x).ToArray());
    9780        } else {
    9881          this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points
    9982            .DataBindXY(Content.ProblemData.TrainingIndizes.ToArray(),
    100                         Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes, 1).SelectMany(x => x.Single()).Skip(varIndex).TakeEvery(Content.ProblemData.TargetVariables.Count()).ToArray());
     83                        Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes, 1).SelectMany(x => x).ToArray());
    10184        }
    10285        this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Tag = Content;
     
    11093        this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].ChartType = SeriesChartType.FastLine;
    11194        if (prognosedValuesCheckbox.Checked) {
    112           int offsetToStart = testPrognosisStart - Content.ProblemData.TestPartition.Start;
    11395          this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points
    114             .DataBindXY(Content.ProblemData.TestIndizes.Skip(offsetToStart).ToArray(),
    115                         Content.GetPrognosedValues(Enumerable.Range(testPrognosisStart, 1), Content.ProblemData.TestPartition.End - testPrognosisStart)
    116                         .SelectMany(x => x.SelectMany(y => y))
    117                         .Skip(varIndex)
    118                         .TakeEvery(Content.ProblemData.TargetVariables.Count())
    119                         .ToArray());
     96            .DataBindXY(Content.ProblemData.TestIndizes.ToArray(),
     97                        Content.GetPrognosedValues(Content.ProblemData.TestIndizes.Take(1), Content.ProblemData.TestPartition.Size).SelectMany(x => x).ToArray());
    12098        } else {
    12199          this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points
    122100            .DataBindXY(Content.ProblemData.TestIndizes.ToArray(),
    123                         Content.GetPrognosedValues(Content.ProblemData.TestIndizes, 1)
    124                         .SelectMany(x => x.Single())
    125                         .Skip(varIndex)
    126                         .TakeEvery(Content.ProblemData.TargetVariables.Count())
    127                         .ToArray());
     101                        Content.GetPrognosedValues(Content.ProblemData.TestIndizes, 1).SelectMany(x => x).ToArray());
    128102        }
    129103        this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Tag = Content;
     
    159133    protected override void OnContentChanged() {
    160134      base.OnContentChanged();
    161       UpdateTargetVariables();
     135      RedrawChart();
    162136    }
    163137
    164138    private void Content_ProblemDataChanged(object sender, EventArgs e) {
    165       UpdateTargetVariables();
     139      RedrawChart();
    166140    }
    167141    private void Content_ModelChanged(object sender, EventArgs e) {
     
    212186              this.CreateAndAddStripLine("Training and Test", start, row, Color.FromArgb(40, Color.Green), Color.FromArgb(40, Color.Red), ChartHatchStyle.WideUpwardDiagonal);
    213187              break;
    214             default:
    215               // should not happen
    216               break;
     188            default: throw new NotSupportedException();
    217189          }
    218190          curAttr = attr[row];
     
    242214        }
    243215      } else if (Content != null) {
    244         string targetVariable = (string)targetVariableComboBox.SelectedItem;
    245         int varIndex = Content.ProblemData.TargetVariables.ToList().IndexOf(targetVariable);
    246 
     216        string targetVariable = Content.ProblemData.TargetVariable;
    247217
    248218        IEnumerable<int> indizes = null;
    249219        IEnumerable<double> predictedValues = null;
     220
    250221        switch (series.Name) {
    251222          case PROGNOSEDVALUES_TRAINING_SERIES_NAME:
    252223            indizes = Content.ProblemData.TrainingIndizes.ToArray();
    253             predictedValues =
    254               Content.PrognosedTrainingValues.SelectMany(x => x).Skip(varIndex).TakeEvery(
    255                 Content.ProblemData.TargetVariables.Count()).ToArray();
     224            predictedValues = Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes.Take(1), Content.ProblemData.TrainingPartition.Size).First();
    256225            break;
    257226          case PROGNOSEDVALUES_TEST_SERIES_NAME:
    258227            testPrognosisStart = Content.ProblemData.TestPartition.Start;
    259228            indizes = Content.ProblemData.TestIndizes.ToArray();
    260             predictedValues = Content.PrognosedTestValues.SelectMany(x => x).Skip(varIndex).TakeEvery(
    261               Content.ProblemData.TargetVariables.Count()).ToArray();
     229            predictedValues = Content.GetPrognosedValues(Content.ProblemData.TestIndizes.Take(1), Content.ProblemData.TestPartition.Size).First();
    262230            break;
    263231        }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Views/3.4/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionPrognosedValuesView.cs

    r7154 r7989  
    8282
    8383    private void UpdateEstimatedValues() {
    84       if (InvokeRequired) Invoke((Action)UpdateEstimatedValues);
    85       else {
    86         StringMatrix matrix = null;
    87         List<string> columnNames = new List<string>();
    88         if (Content != null) {
    89           columnNames.Add("Id");
     84      if (InvokeRequired) {
     85        Invoke((Action)UpdateEstimatedValues);
     86        return;
     87      }
     88      if (Content == null) return;
    9089
    91           string[,] values = new string[Content.ProblemData.Dataset.Rows, 1 + 3 * Content.ProblemData.TargetVariables.Count()];
    92           foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows))
    93             values[row, 0] = row.ToString();
     90      var targetVariable = Content.ProblemData.TargetVariable;
     91      StringMatrix matrix = null;
     92      List<string> columnNames = new List<string>();
     93      columnNames.Add("Id");
    9494
    95           var allPrognosedTraining = Content.PrognosedTrainingValues.SelectMany(x=>x).ToArray();
    96           var allPrognosedTest = Content.PrognosedTestValues.SelectMany(x => x).ToArray();
    97 
    98           int i = 0;
    99           int targetVariableIndex = 0;
    100           foreach (var targetVariable in Content.ProblemData.TargetVariables) {
    101             var prognosedTraining =
    102               allPrognosedTraining.Skip(targetVariableIndex).TakeEvery(Content.ProblemData.TargetVariables.Count());
    103             var prognosedTest =
    104               allPrognosedTest.Skip(targetVariableIndex).TakeEvery(Content.ProblemData.TargetVariables.Count());
    105 
    106             double[] target = Content.ProblemData.Dataset.GetDoubleValues(targetVariable).ToArray();
    107 
    108             var prognosedTrainingEnumerator = prognosedTraining.GetEnumerator();
    109             foreach (var row in Content.ProblemData.TrainingIndizes) {
    110               prognosedTrainingEnumerator.MoveNext();
    111               values[row, i + 2] = prognosedTrainingEnumerator.Current.ToString();
    112             }
    113 
    114             var prognosedTestEnumerator = prognosedTest.GetEnumerator();
    115             foreach (var row in Content.ProblemData.TestIndizes) {
    116               prognosedTestEnumerator.MoveNext();
    117               values[row, i + 3] = prognosedTestEnumerator.Current.ToString();
    118             }
    119 
    120             foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows)) {
    121               values[row, i + 1] = target[row].ToString();
    122             }
    123 
    124             columnNames.AddRange(new string[] { targetVariable + "(actual)", targetVariable + "(training)", targetVariable + "(test)" });
    125             i += 3;
    126             targetVariableIndex++;
    127           } // foreach
     95      string[,] values = new string[Content.ProblemData.Dataset.Rows, 4];
     96      var prognosedTraining = Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes.Take(1), Content.ProblemData.TrainingPartition.Size).First();
     97      var prognosedTest = Content.GetPrognosedValues(Content.ProblemData.TrainingIndizes.Take(1), Content.ProblemData.TestPartition.Size).First();
     98      double[] target = Content.ProblemData.Dataset.GetDoubleValues(targetVariable).ToArray();
    12899
    129100
    130           matrix = new StringMatrix(values);
    131           matrix.ColumnNames = columnNames.ToArray();
    132           matrix.SortableView = true;
     101      foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows)) {
     102        values[row, 0] = row.ToString();
     103        values[row, 1] = target[row].ToString();
     104      }
    133105
    134         } // if
    135         matrixView.Content = matrix;
     106      var rowsEnumerator = Content.ProblemData.TrainingIndizes.GetEnumerator();
     107      var prognosisEnumerator = prognosedTraining.GetEnumerator();
     108      while (rowsEnumerator.MoveNext() & prognosisEnumerator.MoveNext()) {
     109        var row = rowsEnumerator.Current;
     110        var prognosis = prognosisEnumerator.Current;
     111        values[row, 2] = prognosis.ToString();
    136112      }
     113
     114      rowsEnumerator = Content.ProblemData.TestIndizes.GetEnumerator();
     115      prognosisEnumerator = prognosedTest.GetEnumerator();
     116      while (rowsEnumerator.MoveNext() & prognosisEnumerator.MoveNext()) {
     117        var row = rowsEnumerator.Current;
     118        var prognosis = prognosisEnumerator.Current;
     119        values[row, 3] = prognosis.ToString();
     120      }
     121
     122      columnNames.AddRange(new string[] { targetVariable + "(actual)", targetVariable + "(training)", targetVariable + "(test)" });
     123      matrix = new StringMatrix(values);
     124      matrix.ColumnNames = columnNames.ToArray();
     125      matrix.SortableView = true;
    137126    }
    138127    #endregion
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Dataset.cs

    r7842 r7989  
    193193      if (values == null) throw new ArgumentException("The varialbe " + variableName + " is not a double variable.");
    194194
    195       foreach (int index in rows)
    196         yield return values[index];
     195      return rows.Select(index => values[index]);
    197196    }
    198197
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/DatasetExtensions.cs

    r7154 r7989  
    2020#endregion
    2121
    22 using System;
    2322using System.Collections.Generic;
    24 using System.Linq;
    25 using System.Text;
    26 using HeuristicLab.PluginInfrastructure;
    2723
    2824namespace HeuristicLab.Problems.DataAnalysis {
    2925  public static class DatasetExtensions {
    30     public static IEnumerable<double> GetVectorEnumerable(this Dataset ds, IEnumerable<string> targetVariables, IEnumerable<int> rows) {
    31       var vars = targetVariables.ToArray();
    32       var values = (from var in vars
    33                     select ds.GetReadOnlyDoubleValues(var))
    34         .ToArray();
    35 
    36       foreach (var r in rows) {
    37         for (int i = 0; i < values.Length; i++)
    38           yield return values[i][r];
    39       }
    40     }
    41 
    4226    public static IEnumerable<T> TakeEvery<T>(this IEnumerable<T> xs, int nth) {
    4327      int i = 0;
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisProblemData.cs

    r7886 r7989  
    3333  [Item("TimeSeriesPrognosisProblemData", "Represents an item containing all data defining a time series prognosis problem.")]
    3434  public class TimeSeriesPrognosisProblemData : DataAnalysisProblemData, ITimeSeriesPrognosisProblemData {
    35     protected const string TargetVariablesParameterName = "TargetVariables";
     35    protected const string TargetVariableParameterName = "TargetVariable";
    3636
    3737    #region default data
     
    15401540    private static readonly Dataset defaultDataset;
    15411541    private static readonly IEnumerable<string> defaultAllowedInputVariables;
    1542     private static readonly string[] defaultTargetVariables;
     1542    private static readonly string defaultTargetVariable;
    15431543
    15441544    private static readonly TimeSeriesPrognosisProblemData emptyProblemData;
     
    15511551      defaultDataset.Name = "Mackey-Glass (t=17) Time Series Benchmark Dataset";
    15521552      defaultAllowedInputVariables = new List<string>() { "x" };
    1553       defaultTargetVariables = new string[] { "x" };
     1553      defaultTargetVariable = "x";
    15541554
    15551555      var problemData = new TimeSeriesPrognosisProblemData();
     
    15631563      problemData.Parameters.Add(new FixedValueParameter<IntRange>(TrainingPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
    15641564      problemData.Parameters.Add(new FixedValueParameter<IntRange>(TestPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
    1565       problemData.Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariablesParameterName, new ItemSet<StringValue>()));
     1565      problemData.Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>()));
    15661566      emptyProblemData = problemData;
    15671567    }
    15681568    #endregion
    15691569
    1570     public ValueParameter<CheckedItemList<StringValue>> TargetVariablesParameter {
    1571       get { return (ValueParameter<CheckedItemList<StringValue>>)Parameters[TargetVariablesParameterName]; }
     1570    public ConstrainedValueParameter<StringValue> TargetVariableParameter {
     1571      get { return (ConstrainedValueParameter<StringValue>)Parameters[TargetVariableParameterName]; }
    15721572    }
    1573     public IEnumerable<string> TargetVariables {
    1574       get { return TargetVariablesParameter.Value.CheckedItems.Select(x => x.Value.Value); }
     1573    public string TargetVariable {
     1574      get { return TargetVariableParameter.Value.Value; }
    15751575    }
    15761576
     
    15921592
    15931593    public TimeSeriesPrognosisProblemData()
    1594       : this(defaultDataset, defaultAllowedInputVariables, defaultTargetVariables) {
     1594      : this(defaultDataset, defaultAllowedInputVariables, defaultTargetVariable) {
    15951595    }
    15961596
    1597     public TimeSeriesPrognosisProblemData(Dataset dataset, IEnumerable<string> allowedInputVariables, IEnumerable<string> targetVariables)
     1597    public TimeSeriesPrognosisProblemData(Dataset dataset, IEnumerable<string> allowedInputVariables, string targetVariable)
    15981598      : base(dataset, allowedInputVariables) {
    15991599      var variables = InputVariables.Select(x => x.AsReadOnly()).ToList();
    1600       var targetVariablesList = new CheckedItemList<StringValue>(variables);
    1601       foreach (var targetVar in targetVariables) {
    1602         targetVariablesList.SetItemCheckedState(targetVariablesList.Single(x => x.Value == targetVar), true);
    1603       }
    1604       Parameters.Add(new FixedValueParameter<CheckedItemList<StringValue>>(TargetVariablesParameterName, targetVariablesList));
     1600      Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>(variables), variables.First(x => x.Value == targetVariable)));
    16051601      RegisterParameterEvents();
    16061602    }
    16071603
    16081604    private void RegisterParameterEvents() {
    1609       TargetVariablesParameter.Value.CheckedItemsChanged += TargetVariableParameter_ValueChanged;
     1605      TargetVariableParameter.ValueChanged += new EventHandler(TargetVariableParameter_ValueChanged);
    16101606    }
    1611 
    16121607    private void TargetVariableParameter_ValueChanged(object sender, EventArgs e) {
    16131608      OnChanged();
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolution.cs

    r7160 r7989  
    2121
    2222using System.Collections.Generic;
    23 using System.Linq;
    2423using HeuristicLab.Common;
    2524using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     
    3332
    3433    [StorableConstructor]
    35     protected TimeSeriesPrognosisSolution(bool deserializing)
    36       : base(deserializing) {
    37     }
    38     protected TimeSeriesPrognosisSolution(TimeSeriesPrognosisSolution original, Cloner cloner)
    39       : base(original, cloner) {
    40     }
    41     protected TimeSeriesPrognosisSolution(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
    42       : base(model, problemData) {
    43     }
     34    protected TimeSeriesPrognosisSolution(bool deserializing) : base(deserializing) { }
     35    protected TimeSeriesPrognosisSolution(TimeSeriesPrognosisSolution original, Cloner cloner) : base(original, cloner) { }
     36    protected TimeSeriesPrognosisSolution(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData) : base(model, problemData) { }
    4437
    4538    protected override void RecalculateResults() {
     
    4740    }
    4841
    49     public override IEnumerable<IEnumerable<double>> PrognosedTrainingValues {
    50       get {
    51         return GetPrognosedValues(ProblemData.TrainingIndizes.Take(1),
    52           ProblemData.TrainingPartition.End - ProblemData.TrainingPartition.Start)
    53           .First();
    54       }
    55     }
    56     public override IEnumerable<IEnumerable<double>> PrognosedTestValues {
    57       get {
    58         return GetPrognosedValues(ProblemData.TestIndizes.Take(1),
    59           ProblemData.TestPartition.End - ProblemData.TestPartition.Start)
    60           .First();
    61       }
    62     }
    63     public override IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(IEnumerable<int> rows, int horizon) {
     42    public override IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, int horizon) {
    6443      return Model.GetPrognosedValues(ProblemData.Dataset, rows, horizon);
    65     }
    66 
    67     protected override void OnProblemDataChanged() {
    68       base.OnProblemDataChanged();
    69     }
    70 
    71     protected override void OnModelChanged() {
    72       base.OnModelChanged();
    7344    }
    7445  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionBase.cs

    r7194 r7989  
    2121
    2222using System;
    23 using System.Collections.Concurrent;
    2423using System.Collections.Generic;
    2524using System.Linq;
     
    7574    }
    7675
    77     public abstract IEnumerable<IEnumerable<double>> PrognosedTrainingValues { get; }
    78     public abstract IEnumerable<IEnumerable<double>> PrognosedTestValues { get; }
    79     public abstract IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(IEnumerable<int> rows, int horizon);
     76    public abstract IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, int horizon);
    8077
    8178    #region Results
    82     public double[] TrainingMeanSquaredError {
    83       get { return ((DoubleArray)this[TrainingMeanSquaredErrorResultName].Value).ToArray(); }
    84       private set { this[TrainingMeanSquaredErrorResultName].Value = new DoubleArray(value); }
    85     }
    86     public double[] TestMeanSquaredError {
    87       get { return ((DoubleArray)this[TestMeanSquaredErrorResultName].Value).ToArray(); }
    88       private set { this[TestMeanSquaredErrorResultName].Value = new DoubleArray(value); }
    89     }
    90     public double[] TrainingMeanAbsoluteError {
    91       get { return ((DoubleArray)this[TrainingMeanAbsoluteErrorResultName].Value).ToArray(); }
    92       private set { this[TrainingMeanAbsoluteErrorResultName].Value = new DoubleArray(value); }
    93     }
    94     public double[] TestMeanAbsoluteError {
    95       get { return ((DoubleArray)this[TestMeanAbsoluteErrorResultName].Value).ToArray(); }
    96       private set { this[TestMeanAbsoluteErrorResultName].Value = new DoubleArray(value); }
    97     }
    98     public double[] TrainingRSquared {
    99       get { return ((DoubleArray)this[TrainingSquaredCorrelationResultName].Value).ToArray(); }
    100       private set { this[TrainingSquaredCorrelationResultName].Value = new DoubleArray(value); }
    101     }
    102     public double[] TestRSquared {
    103       get { return ((DoubleArray)this[TestSquaredCorrelationResultName].Value).ToArray(); }
    104       private set { this[TestSquaredCorrelationResultName].Value = new DoubleArray(value); }
    105     }
    106     public double[] TrainingRelativeError {
    107       get { return ((DoubleArray)this[TrainingRelativeErrorResultName].Value).ToArray(); }
    108       private set { this[TrainingRelativeErrorResultName].Value = new DoubleArray(value); }
    109     }
    110     public double[] TestRelativeError {
    111       get { return ((DoubleArray)this[TestRelativeErrorResultName].Value).ToArray(); }
    112       private set { this[TestRelativeErrorResultName].Value = new DoubleArray(value); }
    113     }
    114     public double[] TrainingNormalizedMeanSquaredError {
    115       get { return ((DoubleArray)this[TrainingNormalizedMeanSquaredErrorResultName].Value).ToArray(); }
    116       private set { this[TrainingNormalizedMeanSquaredErrorResultName].Value = new DoubleArray(value); }
    117     }
    118     public double[] TestNormalizedMeanSquaredError {
    119       get { return ((DoubleArray)this[TestNormalizedMeanSquaredErrorResultName].Value).ToArray(); }
    120       private set { this[TestNormalizedMeanSquaredErrorResultName].Value = new DoubleArray(value); }
    121     }
    122     public double[] TrainingDirectionalSymmetry {
    123       get { return ((DoubleArray)this[TrainingDirectionalSymmetryResultName].Value).ToArray(); }
    124       private set { this[TrainingDirectionalSymmetryResultName].Value = new DoubleArray(value); }
    125     }
    126     public double[] TestDirectionalSymmetry {
    127       get { return ((DoubleArray)this[TestDirectionalSymmetryResultName].Value).ToArray(); }
    128       private set { this[TestDirectionalSymmetryResultName].Value = new DoubleArray(value); }
    129     }
    130     public double[] TrainingWeightedDirectionalSymmetry {
    131       get { return ((DoubleArray)this[TrainingWeightedDirectionalSymmetryResultName].Value).ToArray(); }
    132       private set { this[TrainingWeightedDirectionalSymmetryResultName].Value = new DoubleArray(value); }
    133     }
    134     public double[] TestWeightedDirectionalSymmetry {
    135       get { return ((DoubleArray)this[TestWeightedDirectionalSymmetryResultName].Value).ToArray(); }
    136       private set { this[TestWeightedDirectionalSymmetryResultName].Value = new DoubleArray(value); }
    137     }
    138     public double[] TrainingTheilsUStatisticLast {
    139       get { return ((DoubleArray)this[TrainingTheilsUStatisticLastResultName].Value).ToArray(); }
    140       private set { this[TrainingTheilsUStatisticLastResultName].Value = new DoubleArray(value); }
    141     }
    142     public double[] TestTheilsUStatisticLast {
    143       get { return ((DoubleArray)this[TestTheilsUStatisticLastResultName].Value).ToArray(); }
    144       private set { this[TestTheilsUStatisticLastResultName].Value = new DoubleArray(value); }
    145     }
    146     public double[] TrainingTheilsUStatisticMean {
    147       get { return ((DoubleArray)this[TrainingTheilsUStatisticMeanResultName].Value).ToArray(); }
    148       private set { this[TrainingTheilsUStatisticMeanResultName].Value = new DoubleArray(value); }
    149     }
    150     public double[] TestTheilsUStatisticMean {
    151       get { return ((DoubleArray)this[TestTheilsUStatisticMeanResultName].Value).ToArray(); }
    152       private set { this[TestTheilsUStatisticMeanResultName].Value = new DoubleArray(value); }
    153     }
    154     public double[] TrainingTheilsUStatisticMovingAverage {
    155       get { return ((DoubleArray)this[TrainingTheilsUStatisticMaResultName].Value).ToArray(); }
    156       private set { this[TrainingTheilsUStatisticMaResultName].Value = new DoubleArray(value); }
    157     }
    158     public double[] TestTheilsUStatisticMovingAverage {
    159       get { return ((DoubleArray)this[TestTheilsUStatisticMaResultName].Value).ToArray(); }
    160       private set { this[TestTheilsUStatisticMaResultName].Value = new DoubleArray(value); }
     79    public double TrainingMeanSquaredError {
     80      get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
     81      private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
     82    }
     83    public double TestMeanSquaredError {
     84      get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
     85      private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
     86    }
     87    public double TrainingMeanAbsoluteError {
     88      get { return ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value; }
     89      private set { ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value = value; }
     90    }
     91    public double TestMeanAbsoluteError {
     92      get { return ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value; }
     93      private set { ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value = value; }
     94    }
     95    public double TrainingRSquared {
     96      get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
     97      private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
     98    }
     99    public double TestRSquared {
     100      get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
     101      private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
     102    }
     103    public double TrainingRelativeError {
     104      get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
     105      private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
     106    }
     107    public double TestRelativeError {
     108      get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
     109      private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
     110    }
     111    public double TrainingNormalizedMeanSquaredError {
     112      get { return ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value; }
     113      private set { ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; }
     114    }
     115    public double TestNormalizedMeanSquaredError {
     116      get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; }
     117      private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; }
     118    }
     119    public double TrainingDirectionalSymmetry {
     120      get { return ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value; }
     121      private set { ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value = value; }
     122    }
     123    public double TestDirectionalSymmetry {
     124      get { return ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value; }
     125      private set { ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value = value; }
     126    }
     127    public double TrainingWeightedDirectionalSymmetry {
     128      get { return ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value; }
     129      private set { ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value = value; }
     130    }
     131    public double TestWeightedDirectionalSymmetry {
     132      get { return ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value; }
     133      private set { ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value = value; }
     134    }
     135    public double TrainingTheilsUStatisticLast {
     136      get { return ((DoubleValue)this[TrainingTheilsUStatisticLastResultName].Value).Value; }
     137      private set { ((DoubleValue)this[TrainingTheilsUStatisticLastResultName].Value).Value = value; }
     138    }
     139    public double TestTheilsUStatisticLast {
     140      get { return ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value; }
     141      private set { ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value = value; }
     142    }
     143    public double TrainingTheilsUStatisticMean {
     144      get { return ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value; }
     145      private set { ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value = value; }
     146    }
     147    public double TestTheilsUStatisticMean {
     148      get { return ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value; }
     149      private set { ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value = value; }
     150    }
     151    public double TrainingTheilsUStatisticMovingAverage {
     152      get { return ((DoubleValue)this[TrainingTheilsUStatisticMaResultName].Value).Value; }
     153      private set { ((DoubleValue)this[TrainingTheilsUStatisticMaResultName].Value).Value = value; }
     154    }
     155    public double TestTheilsUStatisticMovingAverage {
     156      get { return ((DoubleValue)this[TestTheilsUStatisticMaResultName].Value).Value; }
     157      private set { ((DoubleValue)this[TestTheilsUStatisticMaResultName].Value).Value = value; }
    161158    }
    162159    #endregion
     
    170167    protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
    171168      : base(model, problemData) {
    172       Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleArray()));
    173       Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleArray()));
    174       Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleArray()));
    175       Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleArray()));
    176       Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleArray()));
    177       Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleArray()));
    178       Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new DoubleArray()));
    179       Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new DoubleArray()));
    180       Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleArray()));
    181       Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleArray()));
    182       Add(new Result(TrainingDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the training partition", new DoubleArray()));
    183       Add(new Result(TestDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the test partition", new DoubleArray()));
    184       Add(new Result(TrainingWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the training partition", new DoubleArray()));
    185       Add(new Result(TestWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the test partition", new DoubleArray()));
    186       Add(new Result(TrainingTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the training partition", new DoubleArray()));
    187       Add(new Result(TestTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the test partition", new DoubleArray()));
    188       Add(new Result(TrainingTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the training partition", new DoubleArray()));
    189       Add(new Result(TestTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition", new DoubleArray()));
    190       Add(new Result(TrainingTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the training partition", new DoubleArray()));
    191       Add(new Result(TestTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the test partition", new DoubleArray()));
     169      Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleValue()));
     170      Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleValue()));
     171      Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleValue()));
     172      Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleValue()));
     173      Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleValue()));
     174      Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleValue()));
     175      Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new DoubleValue()));
     176      Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new DoubleValue()));
     177      Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleValue()));
     178      Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleValue()));
     179      Add(new Result(TrainingDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the training partition", new DoubleValue()));
     180      Add(new Result(TestDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the test partition", new DoubleValue()));
     181      Add(new Result(TrainingWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the training partition", new DoubleValue()));
     182      Add(new Result(TestWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the test partition", new DoubleValue()));
     183      Add(new Result(TrainingTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the training partition", new DoubleValue()));
     184      Add(new Result(TestTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the test partition", new DoubleValue()));
     185      Add(new Result(TrainingTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the training partition", new DoubleValue()));
     186      Add(new Result(TestTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition", new DoubleValue()));
     187      Add(new Result(TrainingTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the training partition", new DoubleValue()));
     188      Add(new Result(TestTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the test partition", new DoubleValue()));
    192189      horizon = 1;
    193190    }
    194191
    195     [StorableHook(HookType.AfterDeserialization)]
    196     private void AfterDeserialization() {
    197       if (horizon == 0) horizon = 1;
    198       bool anyNewResult = false;
    199       if (!ContainsKey(TrainingTheilsUStatisticLastResultName)) {
    200         Add(new Result(TrainingTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the training partition", new DoubleArray()));
    201         anyNewResult = true;
    202       }
    203       if (!ContainsKey(TestTheilsUStatisticLastResultName)) {
    204         Add(new Result(TestTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the test partition", new DoubleArray()));
    205         anyNewResult = true;
    206       }
    207       if (!ContainsKey(TrainingTheilsUStatisticMeanResultName)) {
    208         Add(new Result(TrainingTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the training partition", new DoubleArray()));
    209         anyNewResult = true;
    210       }
    211       if (!ContainsKey(TestTheilsUStatisticMeanResultName)) {
    212         Add(new Result(TestTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition", new DoubleArray()));
    213         anyNewResult = true;
    214       }
    215       if (!ContainsKey(TrainingTheilsUStatisticMaResultName)) {
    216         Add(new Result(TrainingTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the training partition", new DoubleArray()));
    217         anyNewResult = true;
    218       }
    219       if (!ContainsKey(TestTheilsUStatisticMaResultName)) {
    220         Add(new Result(TestTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the test partition", new DoubleArray()));
    221         anyNewResult = true;
    222       }
    223       if (anyNewResult)
    224         RecalculateResults();
    225     }
    226192
    227193    protected void CalculateResults() {
    228       string[] targetVariables = ProblemData.TargetVariables.ToArray();
    229 
    230       var trainingMseCalculators = new OnlineMeanSquaredErrorCalculator[targetVariables.Length];
    231       var testMseCalculators = new OnlineMeanSquaredErrorCalculator[targetVariables.Length];
    232       var trainingMaeCalculators = new OnlineMeanAbsoluteErrorCalculator[targetVariables.Length];
    233       var testMaeCalculators = new OnlineMeanAbsoluteErrorCalculator[targetVariables.Length];
    234       var trainingRSquaredCalculators = new OnlinePearsonsRSquaredCalculator[targetVariables.Length];
    235       var testRSquaredCalculators = new OnlinePearsonsRSquaredCalculator[targetVariables.Length];
    236       var trainingRelErrorCalculators = new OnlineMeanAbsolutePercentageErrorCalculator[targetVariables.Length];
    237       var testRelErrorCalculators = new OnlineMeanAbsolutePercentageErrorCalculator[targetVariables.Length];
    238       var trainingNmseCalculators = new OnlineNormalizedMeanSquaredErrorCalculator[targetVariables.Length];
    239       var testNmseCalculators = new OnlineNormalizedMeanSquaredErrorCalculator[targetVariables.Length];
    240 
    241       var trainingDsCalculators = new OnlineDirectionalSymmetryCalculator[targetVariables.Length];
    242       var testDsCalculators = new OnlineDirectionalSymmetryCalculator[targetVariables.Length];
    243       var trainingWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator[targetVariables.Length];
    244       var testWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator[targetVariables.Length];
    245       var trainingTheilsULastCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    246       var testTheilsULastCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    247       var trainingTheilsUMeanCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    248       var testTheilsUMeanCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    249       var trainingTheilsUMovingAverageCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    250       var testTheilsUMovingAverageCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
    251       for (int i = 0; i < targetVariables.Length; i++) {
    252         trainingMseCalculators[i] = new OnlineMeanSquaredErrorCalculator();
    253         testMseCalculators[i] = new OnlineMeanSquaredErrorCalculator();
    254         trainingMaeCalculators[i] = new OnlineMeanAbsoluteErrorCalculator();
    255         testMaeCalculators[i] = new OnlineMeanAbsoluteErrorCalculator();
    256         trainingRSquaredCalculators[i] = new OnlinePearsonsRSquaredCalculator();
    257         testRSquaredCalculators[i] = new OnlinePearsonsRSquaredCalculator();
    258         trainingRelErrorCalculators[i] = new OnlineMeanAbsolutePercentageErrorCalculator();
    259         testRelErrorCalculators[i] = new OnlineMeanAbsolutePercentageErrorCalculator();
    260         trainingNmseCalculators[i] = new OnlineNormalizedMeanSquaredErrorCalculator();
    261         testNmseCalculators[i] = new OnlineNormalizedMeanSquaredErrorCalculator();
    262 
    263         trainingDsCalculators[i] = new OnlineDirectionalSymmetryCalculator();
    264         testDsCalculators[i] = new OnlineDirectionalSymmetryCalculator();
    265         trainingWdsCalculators[i] = new OnlineWeightedDirectionalSymmetryCalculator();
    266         testWdsCalculators[i] = new OnlineWeightedDirectionalSymmetryCalculator();
    267         trainingTheilsULastCalculators[i] = new OnlineTheilsUStatisticCalculator();
    268         testTheilsULastCalculators[i] = new OnlineTheilsUStatisticCalculator();
    269         trainingTheilsUMeanCalculators[i] = new OnlineTheilsUStatisticCalculator();
    270         testTheilsUMeanCalculators[i] = new OnlineTheilsUStatisticCalculator();
    271         trainingTheilsUMovingAverageCalculators[i] = new OnlineTheilsUStatisticCalculator();
    272         testTheilsUMovingAverageCalculators[i] = new OnlineTheilsUStatisticCalculator();
    273       }
    274 
    275       var allPrognosedTrainingValues = GetPrognosedValues(ProblemData.TrainingIndizes, horizon).GetEnumerator();
    276       double[] mean = new double[targetVariables.Length];
    277       for (int t = 0; t < targetVariables.Length; t++) {
    278         double variance;
    279         OnlineCalculatorError meanErrorState, varErrorState;
    280         OnlineMeanAndVarianceCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(targetVariables[t], ProblemData.TrainingIndizes), out mean[t], out variance, out meanErrorState, out varErrorState);
    281         if (meanErrorState != OnlineCalculatorError.None) mean[t] = 0.0;
    282       }
     194      string targetVariable = ProblemData.TargetVariable;
     195
     196      var trainingMseCalculators = new OnlineMeanSquaredErrorCalculator();
     197      var testMseCalculators = new OnlineMeanSquaredErrorCalculator();
     198      var trainingMaeCalculators = new OnlineMeanAbsoluteErrorCalculator();
     199      var testMaeCalculators = new OnlineMeanAbsoluteErrorCalculator();
     200      var trainingRSquaredCalculators = new OnlinePearsonsRSquaredCalculator();
     201      var testRSquaredCalculators = new OnlinePearsonsRSquaredCalculator();
     202      var trainingRelErrorCalculators = new OnlineMeanAbsolutePercentageErrorCalculator();
     203      var testRelErrorCalculators = new OnlineMeanAbsolutePercentageErrorCalculator();
     204      var trainingNmseCalculators = new OnlineNormalizedMeanSquaredErrorCalculator();
     205      var testNmseCalculators = new OnlineNormalizedMeanSquaredErrorCalculator();
     206
     207      var trainingDsCalculators = new OnlineDirectionalSymmetryCalculator();
     208      var testDsCalculators = new OnlineDirectionalSymmetryCalculator();
     209      var trainingWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator();
     210      var testWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator();
     211      var trainingTheilsULastCalculators = new OnlineTheilsUStatisticCalculator();
     212      var testTheilsULastCalculators = new OnlineTheilsUStatisticCalculator();
     213      var trainingTheilsUMeanCalculators = new OnlineTheilsUStatisticCalculator();
     214      var testTheilsUMeanCalculators = new OnlineTheilsUStatisticCalculator();
     215      var trainingTheilsUMovingAverageCalculators = new OnlineTheilsUStatisticCalculator();
     216      var testTheilsUMovingAverageCalculators = new OnlineTheilsUStatisticCalculator();
     217
     218      double mean = ProblemData.Dataset.GetDoubleValues(targetVariable, ProblemData.TrainingIndizes).Average();
     219
    283220      foreach (var row in ProblemData.TrainingIndizes) {
    284221        if (row + horizon < ProblemData.Dataset.Rows) {
    285           allPrognosedTrainingValues.MoveNext();
    286           var prognosedTrainingValues = allPrognosedTrainingValues.Current.SelectMany(x => x.ToArray()).ToArray();
    287           for (int t = 0; t < targetVariables.Length; t++) {
    288             var actualContinuation = ProblemData.Dataset.GetDoubleValues(targetVariables[t],
    289                                                                          Enumerable.Range(row, horizon));
    290             int maWindow = 10 * horizon;
    291             var movingAverageContinuation = from h in Enumerable.Range(0, horizon)
    292                                             select (from r in Enumerable.Range(row + h - maWindow, maWindow - h)
    293                                                     where r > 0
    294                                                     select ProblemData.Dataset.GetDoubleValue(targetVariables[t], r)
    295                                                    ).Average();
    296             double startValue = ProblemData.Dataset.GetDoubleValue(targetVariables[t], row - 1);
    297             var prognosedContinuation = prognosedTrainingValues.Skip(t).TakeEvery(targetVariables.Length);
    298             trainingDsCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    299             trainingWdsCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    300             trainingTheilsULastCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    301             trainingTheilsUMeanCalculators[t].Add(startValue, actualContinuation.Select(x => mean[t]), actualContinuation, prognosedContinuation);
    302             trainingTheilsUMovingAverageCalculators[t].Add(startValue, movingAverageContinuation, actualContinuation, prognosedContinuation);
    303 
    304             var actualContinuationEnumerator = actualContinuation.GetEnumerator();
    305             var prognosedContinuationEnumerator = prognosedContinuation.GetEnumerator();
    306             while (actualContinuationEnumerator.MoveNext() & prognosedContinuationEnumerator.MoveNext()) {
    307               trainingMseCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    308               trainingMaeCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    309               trainingRelErrorCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    310               trainingRSquaredCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    311               trainingNmseCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    312             }
    313             if (actualContinuationEnumerator.MoveNext() | prognosedContinuationEnumerator.MoveNext())
    314               throw new ArgumentException(
    315                 "Different number of elements in Actual continuation and prognosed continuation.");
     222          var actualContinuation = ProblemData.Dataset.GetDoubleValues(targetVariable, Enumerable.Range(row, horizon)).ToList();
     223          var prognosedContinuation = GetPrognosedValues(new List<int> { row }, horizon).First().ToList();
     224
     225          int maWindow = 10 * horizon;
     226          var movingAverageContinuation = from h in Enumerable.Range(0, horizon)
     227                                          select (from r in Enumerable.Range(row + h - maWindow, maWindow - h)
     228                                                  where r > 0
     229                                                  select ProblemData.Dataset.GetDoubleValue(targetVariable, r)
     230                                                 ).Average();
     231
     232          double startValue = ProblemData.Dataset.GetDoubleValue(targetVariable, row - 1);
     233
     234          trainingDsCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     235          trainingWdsCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     236          trainingTheilsULastCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     237          trainingTheilsUMeanCalculators.Add(startValue, actualContinuation.Select(x => mean), actualContinuation, prognosedContinuation);
     238          trainingTheilsUMovingAverageCalculators.Add(startValue, movingAverageContinuation, actualContinuation, prognosedContinuation);
     239
     240          var actualContinuationEnumerator = actualContinuation.GetEnumerator();
     241          var prognosedContinuationEnumerator = prognosedContinuation.GetEnumerator();
     242
     243          while (actualContinuationEnumerator.MoveNext() & prognosedContinuationEnumerator.MoveNext()) {
     244            trainingMseCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     245            trainingMaeCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     246            trainingRelErrorCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     247            trainingRSquaredCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     248            trainingNmseCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    316249          }
     250          if (actualContinuationEnumerator.MoveNext() | prognosedContinuationEnumerator.MoveNext())
     251            throw new ArgumentException("Different number of elements in Actual continuation and prognosed continuation.");
    317252        }
    318253      }
    319       var allPrognosedTestValues = GetPrognosedValues(ProblemData.TestIndizes, horizon).ToArray().AsEnumerable().GetEnumerator();
     254
     255      mean = ProblemData.Dataset.GetDoubleValues(targetVariable, ProblemData.TestIndizes).Average();
    320256      foreach (var row in ProblemData.TestIndizes) {
    321257        if (row + horizon < ProblemData.Dataset.Rows) {
    322           allPrognosedTestValues.MoveNext();
    323           var prognosedTestValues = allPrognosedTestValues.Current.SelectMany(x => x);
    324           for (int t = 0; t < targetVariables.Length; t++) {
    325             var actualContinuation = ProblemData.Dataset.GetDoubleValues(targetVariables[t],
    326                                                                          Enumerable.Range(row, horizon));
    327             int maWindow = 10 * horizon;
    328             var movingAverageContinuation = from h in Enumerable.Range(0, horizon)
    329                                             select (from r in Enumerable.Range(row + h - maWindow, maWindow - h)
    330                                                     where r > 0
    331                                                     select ProblemData.Dataset.GetDoubleValue(targetVariables[t], r)
    332                                                    ).Average();
    333             double startValue = ProblemData.Dataset.GetDoubleValue(targetVariables[t], row - 1);
    334             var prognosedContinuation = prognosedTestValues.Skip(t).TakeEvery(targetVariables.Length).ToArray();
    335             testDsCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    336             testWdsCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    337             testTheilsULastCalculators[t].Add(startValue, actualContinuation, prognosedContinuation);
    338             testTheilsUMeanCalculators[t].Add(startValue, actualContinuation.Select(x => mean[t]), actualContinuation, prognosedContinuation);
    339             testTheilsUMovingAverageCalculators[t].Add(startValue, movingAverageContinuation, actualContinuation, prognosedContinuation);
    340 
    341             var actualContinuationEnumerator = actualContinuation.GetEnumerator();
    342             var prognosedContinuationEnumerator = prognosedContinuation.AsEnumerable().GetEnumerator();
    343             while (actualContinuationEnumerator.MoveNext() & prognosedContinuationEnumerator.MoveNext()) {
    344               testMseCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    345               testMaeCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    346               testRelErrorCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    347               testRSquaredCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    348               testNmseCalculators[t].Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    349             }
    350             if (actualContinuationEnumerator.MoveNext() | prognosedContinuationEnumerator.MoveNext())
    351               throw new ArgumentException(
    352                 "Different number of elements in Actual continuation and prognosed continuation.");
     258          var actualContinuation = ProblemData.Dataset.GetDoubleValues(targetVariable, Enumerable.Range(row, horizon)).ToList();
     259          var prognosedContinuation = GetPrognosedValues(new List<int> { row }, horizon).First().ToList();
     260
     261          int maWindow = 10 * horizon;
     262          var movingAverageContinuation = from h in Enumerable.Range(0, horizon)
     263                                          select (from r in Enumerable.Range(row + h - maWindow, maWindow - h)
     264                                                  where r > 0
     265                                                  select ProblemData.Dataset.GetDoubleValue(targetVariable, r)
     266                                                 ).Average();
     267
     268          double startValue = ProblemData.Dataset.GetDoubleValue(targetVariable, row - 1);
     269          testDsCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     270          testWdsCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     271          testTheilsULastCalculators.Add(startValue, actualContinuation, prognosedContinuation);
     272          testTheilsUMeanCalculators.Add(startValue, actualContinuation.Select(x => mean), actualContinuation, prognosedContinuation);
     273          testTheilsUMovingAverageCalculators.Add(startValue, movingAverageContinuation, actualContinuation, prognosedContinuation);
     274
     275          var actualContinuationEnumerator = actualContinuation.GetEnumerator();
     276          var prognosedContinuationEnumerator = prognosedContinuation.GetEnumerator();
     277          while (actualContinuationEnumerator.MoveNext() & prognosedContinuationEnumerator.MoveNext()) {
     278            testMseCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     279            testMaeCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     280            testRelErrorCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     281            testRSquaredCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
     282            testNmseCalculators.Add(actualContinuationEnumerator.Current, prognosedContinuationEnumerator.Current);
    353283          }
     284          if (actualContinuationEnumerator.MoveNext() | prognosedContinuationEnumerator.MoveNext())
     285            throw new ArgumentException("Different number of elements in Actual continuation and prognosed continuation.");
    354286        }
    355287      }
    356288
    357 
    358       TrainingMeanSquaredError = trainingMseCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    359         .ToArray();
    360       TestMeanSquaredError = testMseCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    361         .ToArray();
    362       TrainingMeanAbsoluteError = trainingMaeCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    363         .ToArray();
    364       TestMeanAbsoluteError = testMaeCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    365         .ToArray();
    366       TrainingRelativeError = trainingRelErrorCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    367         .ToArray();
    368       TestRelativeError = testRelErrorCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    369         .ToArray();
    370       TrainingRSquared = trainingRSquaredCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
    371         .ToArray();
    372       TestRSquared = testRSquaredCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
    373         .ToArray();
    374       TrainingNormalizedMeanSquaredError = trainingNmseCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    375         .ToArray();
    376       TestNormalizedMeanSquaredError = testNmseCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    377         .ToArray();
    378 
    379       TrainingDirectionalSymmetry = trainingDsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
    380         .ToArray();
    381       TestDirectionalSymmetry = testDsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
    382         .ToArray();
    383       TrainingWeightedDirectionalSymmetry = trainingWdsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    384         .ToArray();
    385       TestWeightedDirectionalSymmetry = testWdsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    386         .ToArray();
    387       TrainingTheilsUStatisticLast = trainingTheilsULastCalculators
    388         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    389         .ToArray();
    390       TestTheilsUStatisticLast = testTheilsULastCalculators
    391         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    392         .ToArray();
    393       TrainingTheilsUStatisticMean = trainingTheilsUMeanCalculators
    394         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    395         .ToArray();
    396       TestTheilsUStatisticMean = testTheilsUMeanCalculators
    397         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    398         .ToArray();
    399       TrainingTheilsUStatisticMovingAverage = trainingTheilsUMovingAverageCalculators
    400         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    401         .ToArray();
    402       TestTheilsUStatisticMovingAverage = testTheilsUMovingAverageCalculators
    403         .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
    404         .ToArray();
     289      TrainingMeanSquaredError = trainingMseCalculators.ErrorState == OnlineCalculatorError.None ? trainingMseCalculators.Value : double.PositiveInfinity;
     290      TestMeanSquaredError = testMseCalculators.ErrorState == OnlineCalculatorError.None ? testMseCalculators.Value : double.PositiveInfinity;
     291      TrainingMeanAbsoluteError = trainingMaeCalculators.ErrorState == OnlineCalculatorError.None ? trainingMaeCalculators.Value : double.PositiveInfinity;
     292      TestMeanAbsoluteError = testMaeCalculators.ErrorState == OnlineCalculatorError.None ? testMaeCalculators.Value : double.PositiveInfinity;
     293      TrainingRelativeError = trainingRelErrorCalculators.ErrorState == OnlineCalculatorError.None ? trainingRelErrorCalculators.Value : double.PositiveInfinity;
     294      TestRelativeError = testRelErrorCalculators.ErrorState == OnlineCalculatorError.None ? testRelErrorCalculators.Value : double.PositiveInfinity;
     295      TrainingRSquared = trainingRSquaredCalculators.ErrorState == OnlineCalculatorError.None ? trainingRSquaredCalculators.Value : 0.0;
     296      TestRSquared = testRSquaredCalculators.ErrorState == OnlineCalculatorError.None ? testRSquaredCalculators.Value : 0.0;
     297      TrainingNormalizedMeanSquaredError = trainingNmseCalculators.ErrorState == OnlineCalculatorError.None ? trainingNmseCalculators.Value : double.PositiveInfinity;
     298      TestNormalizedMeanSquaredError = testNmseCalculators.ErrorState == OnlineCalculatorError.None ? testNmseCalculators.Value : double.PositiveInfinity;
     299
     300      TrainingDirectionalSymmetry = trainingDsCalculators.ErrorState == OnlineCalculatorError.None ? trainingDsCalculators.Value : 0.0;
     301      TestDirectionalSymmetry = testDsCalculators.ErrorState == OnlineCalculatorError.None ? testDsCalculators.Value : 0.0;
     302      TrainingWeightedDirectionalSymmetry = trainingWdsCalculators.ErrorState == OnlineCalculatorError.None ? trainingWdsCalculators.Value : double.PositiveInfinity;
     303      TestWeightedDirectionalSymmetry = testWdsCalculators.ErrorState == OnlineCalculatorError.None ? testWdsCalculators.Value : double.PositiveInfinity;
     304      TrainingTheilsUStatisticLast = trainingTheilsULastCalculators.ErrorState == OnlineCalculatorError.None ? trainingTheilsULastCalculators.Value : double.PositiveInfinity;
     305      TestTheilsUStatisticLast = testTheilsULastCalculators.ErrorState == OnlineCalculatorError.None ? testTheilsULastCalculators.Value : double.PositiveInfinity;
     306      TrainingTheilsUStatisticMean = trainingTheilsUMeanCalculators.ErrorState == OnlineCalculatorError.None ? trainingTheilsUMeanCalculators.Value : double.PositiveInfinity;
     307      TestTheilsUStatisticMean = testTheilsUMeanCalculators.ErrorState == OnlineCalculatorError.None ? testTheilsUMeanCalculators.Value : double.PositiveInfinity;
     308      TrainingTheilsUStatisticMovingAverage = trainingTheilsUMovingAverageCalculators.ErrorState == OnlineCalculatorError.None ? trainingTheilsUMovingAverageCalculators.Value : double.PositiveInfinity;
     309      TestTheilsUStatisticMovingAverage = testTheilsUMovingAverageCalculators.ErrorState == OnlineCalculatorError.None ? testTheilsUMovingAverageCalculators.Value : double.PositiveInfinity;
    405310    }
    406311  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/TimeSeriesPrognosis/ITimeSeriesPrognosisModel.cs

    r7100 r7989  
    2323namespace HeuristicLab.Problems.DataAnalysis {
    2424  public interface ITimeSeriesPrognosisModel : IDataAnalysisModel {
    25     IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon);
     25    IEnumerable<IEnumerable<double>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon);
    2626    ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData);
    2727  }
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/TimeSeriesPrognosis/ITimeSeriesPrognosisProblemData.cs

    r7100 r7989  
    2020#endregion
    2121
    22 using System.Collections.Generic;
    2322namespace HeuristicLab.Problems.DataAnalysis {
    2423  public interface ITimeSeriesPrognosisProblemData : IDataAnalysisProblemData {
    25     IEnumerable<string> TargetVariables { get; }
     24    string TargetVariable { get; }
    2625  }
    2726}
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/TimeSeriesPrognosis/ITimeSeriesPrognosisSolution.cs

    r7160 r7989  
    2727    new ITimeSeriesPrognosisProblemData ProblemData { get; set; }
    2828
    29     IEnumerable<IEnumerable<double>> PrognosedTrainingValues { get; }
    30     IEnumerable<IEnumerable<double>> PrognosedTestValues { get; }
    31     IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(IEnumerable<int> rows, int horizon);
     29    IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, int horizon);
    3230
    33     double[] TrainingMeanSquaredError { get; }
    34     double[] TestMeanSquaredError { get; }
    35     double[] TrainingMeanAbsoluteError { get; }
    36     double[] TestMeanAbsoluteError { get; }
    37     double[] TrainingRSquared { get; }
    38     double[] TestRSquared { get; }
    39     double[] TrainingRelativeError { get; }
    40     double[] TestRelativeError { get; }
    41     double[] TrainingNormalizedMeanSquaredError { get; }
    42     double[] TestNormalizedMeanSquaredError { get; }
    43     double[] TrainingTheilsUStatisticLast { get; }
    44     double[] TestTheilsUStatisticLast { get; }
    45     double[] TrainingTheilsUStatisticMean { get; }
    46     double[] TestTheilsUStatisticMean { get; }
    47     double[] TrainingDirectionalSymmetry { get; }
    48     double[] TestDirectionalSymmetry { get; }
    49     double[] TrainingWeightedDirectionalSymmetry { get; }
    50     double[] TestWeightedDirectionalSymmetry { get; }
     31    double TrainingMeanSquaredError { get; }
     32    double TestMeanSquaredError { get; }
     33    double TrainingMeanAbsoluteError { get; }
     34    double TestMeanAbsoluteError { get; }
     35    double TrainingRSquared { get; }
     36    double TestRSquared { get; }
     37    double TrainingRelativeError { get; }
     38    double TestRelativeError { get; }
     39    double TrainingNormalizedMeanSquaredError { get; }
     40    double TestNormalizedMeanSquaredError { get; }
     41    double TrainingTheilsUStatisticLast { get; }
     42    double TestTheilsUStatisticLast { get; }
     43    double TrainingTheilsUStatisticMean { get; }
     44    double TestTheilsUStatisticMean { get; }
     45    double TrainingDirectionalSymmetry { get; }
     46    double TestDirectionalSymmetry { get; }
     47    double TrainingWeightedDirectionalSymmetry { get; }
     48    double TestWeightedDirectionalSymmetry { get; }
    5149  }
    5250}
  • branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.Instances.DataAnalysis/3.3/TimeSeries/TimeSeriesPrognosisInstanceProvider.cs

    r7890 r7989  
    4040      IEnumerable<string> allowedInputVars = csvFileParser.VariableNames.Where(x => !x.Equals(targetVar));
    4141
    42       ITimeSeriesPrognosisProblemData regData = new TimeSeriesPrognosisProblemData(dataset, allowedInputVars, new List<string> { targetVar });
     42      ITimeSeriesPrognosisProblemData regData = new TimeSeriesPrognosisProblemData(dataset, allowedInputVars, targetVar);
    4343
    4444      int trainingPartEnd = csvFileParser.Rows * 2 / 3;
Note: See TracChangeset for help on using the changeset viewer.