Changeset 7682 for branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva
- Timestamp:
- 04/02/12 10:55:26 (13 years ago)
- Location:
- branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/KotanchekFunction.cs
r7666 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 100; } } … … 46 46 protected override int TestPartitionEnd { get { return 3025; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 … … 66 66 data.Add(results); 67 67 68 return ValueGenerator.Transformation(data);68 return data; 69 69 } 70 70 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/RationalPolynomialThreeDimensional.cs
r7664 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "X3", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2", "X3" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 300; } } … … 46 46 protected override int TestPartitionEnd { get { return 3700; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 … … 76 76 data.Add(results); 77 77 78 return ValueGenerator.Transformation(data);78 return data; 79 79 } 80 80 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/RationalPolynomialTwoDimensional.cs
r7664 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 50; } } … … 46 46 protected override int TestPartitionEnd { get { return 2157; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 … … 67 67 data.Add(results); 68 68 69 return ValueGenerator.Transformation(data);69 return data; 70 70 } 71 71 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/RippleFunction.cs
r7664 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 300; } } … … 46 46 protected override int TestPartitionEnd { get { return 1300; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 for (int i = 0; i < AllowedInputVariables.Count(); i++) { … … 65 65 data.Add(results); 66 66 67 return ValueGenerator.Transformation(data);67 return data; 68 68 } 69 69 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/SalutowiczFunctionOneDimensional.cs
r7664 r7682 38 38 } 39 39 protected override string TargetVariable { get { return "Y"; } } 40 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X", "Y" }; } }41 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X" }; } }40 protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } 41 protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } 42 42 protected override int TrainingPartitionStart { get { return 0; } } 43 43 protected override int TrainingPartitionEnd { get { return 100; } } … … 45 45 protected override int TestPartitionEnd { get { return 321; } } 46 46 47 protected override double[,]GenerateValues() {47 protected override List<List<double>> GenerateValues() { 48 48 List<List<double>> data = new List<List<double>>(); 49 49 data.Add(ValueGenerator.GenerateSteps(0.05, 10, 0.1)); … … 58 58 data.Add(results); 59 59 60 return ValueGenerator.Transformation(data);60 return data; 61 61 } 62 62 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/SalutowiczFunctionTwoDimensional.cs
r7664 r7682 40 40 } 41 41 protected override string TargetVariable { get { return "Y"; } } 42 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "Y" }; } }43 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2" }; } }42 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } 43 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 44 44 protected override int TrainingPartitionStart { get { return 0; } } 45 45 protected override int TrainingPartitionEnd { get { return 601; } } … … 47 47 protected override int TestPartitionEnd { get { return 3155; } } 48 48 49 protected override double[,]GenerateValues() {49 protected override List<List<double>> GenerateValues() { 50 50 List<List<double>> data = new List<List<double>>(); 51 51 List<List<double>> trainingData = new List<List<double>>() { … … 76 76 data.Add(results); 77 77 78 return ValueGenerator.Transformation(data);78 return data; 79 79 } 80 80 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/SineCosineFunction.cs
r7664 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 30; } } … … 46 46 protected override int TestPartitionEnd { get { return 1461; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-0.05, 6.05, 0.02); … … 66 66 data.Add(results); 67 67 68 return ValueGenerator.Transformation(data);68 return data; 69 69 } 70 70 } -
branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/UnwrappedBallFunctionFiveDimensional.cs
r7664 r7682 39 39 } 40 40 protected override string TargetVariable { get { return "Y"; } } 41 protected override IEnumerable<string> InputVariables { get { return new List<string>(){ "X1", "X2", "X3", "X4", "X5", "Y" }; } }42 protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>(){ "X1", "X2", "X3", "X4", "X5" }; } }41 protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "Y" }; } } 42 protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5" }; } } 43 43 protected override int TrainingPartitionStart { get { return 0; } } 44 44 protected override int TrainingPartitionEnd { get { return 1024; } } … … 46 46 protected override int TestPartitionEnd { get { return 6024; } } 47 47 48 protected override double[,]GenerateValues() {48 protected override List<List<double>> GenerateValues() { 49 49 List<List<double>> data = new List<List<double>>(); 50 50 for (int i = 0; i < AllowedInputVariables.Count(); i++) { … … 65 65 data.Add(results); 66 66 67 return ValueGenerator.Transformation(data);67 return data; 68 68 } 69 69 }
Note: See TracChangeset
for help on using the changeset viewer.