Free cookie consent management tool by TermsFeed Policy Generator

# Changeset 7682

Ignore:
Timestamp:
04/02/12 10:55:26 (12 years ago)
Message:
• added a class Transformer to Problem.Instances
Location:
branches/ProblemInstancesRegressionAndClassification
Files:
58 edited

Unmodified
Removed

• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionProblem.cs

 r7664 regData.Description = Description; regData.TargetVariable = ProblemData.TargetVariable; regData.InputVariables = ProblemData.InputVariables.Select(x => x.Value); regData.AllowedInputVariables = ProblemData.AllowedInputVariables; regData.InputVariables = ProblemData.InputVariables.Select(x => x.Value).ToArray(); regData.AllowedInputVariables = ProblemData.AllowedInputVariables.ToArray(); regData.TrainingPartitionStart = ProblemData.TrainingPartition.Start; regData.TrainingPartitionEnd = ProblemData.TrainingPartition.End; data.Add(ProblemData.Dataset.GetDoubleValues(variable).ToList()); } regData.Values = Transformation(data); regData.Values = Transformer.Transformation(data); return regData; } public static double[,] Transformation(List> data) { if (!data.All(x => x.Count.Equals(data.First().Count))) throw new ArgumentException("Can't create jagged array."); double[,] values = new double[data.First().Count, data.Count]; for (int i = 0; i < values.GetLength(0); i++) { for (int j = 0; j < values.GetLength(1); j++) { values[i, j] = data[j][i]; } } return values; } } }

 r7664 #endregion using System.Collections.Generic; namespace HeuristicLab.Problems.Instances.Regression { protected abstract string TargetVariable { get; } protected abstract IEnumerable InputVariables { get; } protected abstract IEnumerable AllowedInputVariables { get; } protected abstract string[] InputVariables { get; } protected abstract string[] AllowedInputVariables { get; } protected abstract int TrainingPartitionStart { get; } protected abstract int TrainingPartitionEnd { get; } regData.AllowedInputVariables = this.AllowedInputVariables; regData.TargetVariable = this.TargetVariable; regData.Values = this.GenerateValues(); regData.Values = Transformer.Transformation(this.GenerateValues()); regData.TrainingPartitionStart = this.TrainingPartitionStart; regData.TrainingPartitionEnd = this.TrainingPartitionEnd; } protected abstract double[,] GenerateValues(); protected abstract List> GenerateValues(); } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionEight.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 1091; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateSteps(1, 100, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionFifteen.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 5000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionFour.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 21; } } protected override int TestPartitionEnd { get { return 2022; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateSteps(-1, 1, 0.1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionSeven.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 50; } } protected override int TestPartitionEnd { get { return 170; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateSteps(1, 50, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionSix.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "Z", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y", "Z" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y", "Z" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 1000; } } protected override int TestPartitionEnd { get { return 11000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionSixteen.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 5000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionThirteen.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 5000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Keijzer/KeijzerFunctionTwelve.cs

 r7664 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 5000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionEight.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionEleven.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionFive.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionFiveteen.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionFour.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionFourteen.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionNine.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionOne.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionSeven.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionSix.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionTen.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionThirteen.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionThree.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionTwelve.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionTwo.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X0", "X1", "X2", "X3", "X4" }; } } protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5000; } } protected override int TestPartitionEnd { get { return 10000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionEight.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, 0, 4)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionEleven.cs

 r7664 } protected override string TargetVariable { get { return "Z"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "Z" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 1000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionFive.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionFour.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionNine.cs

 r7664 } protected override string TargetVariable { get { return "Z"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "Z" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 1000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionOne.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionSeven.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, 0, 2)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionSix.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionTen.cs

 r7664 } protected override string TargetVariable { get { return "Z"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "Z" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 1000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(1000, 0, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionThree.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionTwelve.cs

 r7664 } protected override string TargetVariable { get { return "Z"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "Z" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 1000; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(1000, 0, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Nguyen/NguyenFunctionTwo.cs

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 20; } } protected override int TestPartitionEnd { get { return 350; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateUniformDistributedValues(500, -1, 1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Properties/AssemblyInfo.cs

 r7667 // [assembly: AssemblyVersion("1.0.*")] [assembly: AssemblyVersion("3.4.0.0")] [assembly: AssemblyFileVersion("3.4.0.7666")] [assembly: AssemblyFileVersion("3.4.0.7667")]
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/RegressionInstanceProvider.cs

 r7664 regData.Name = path.Substring(pos, path.Length - pos); } regData.InputVariables = new List(csvFileParser.VariableNames); regData.InputVariables = new List(csvFileParser.VariableNames).ToArray(); regData.TargetVariable = csvFileParser.VariableNames.Last(); regData.AllowedInputVariables = regData.InputVariables.Where(x => !x.Equals(regData.TargetVariable)); regData.AllowedInputVariables = regData.InputVariables.Where(x => !x.Equals(regData.TargetVariable)).ToArray(); //convert to multidimensional array List values = csvFileParser.Values;
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/TrentMcConaghy/TrentMcConaghyInstanceProvider.cs

 r7667 regData.TargetVariable = regData.InputVariables.First(); regData.AllowedInputVariables = regData.InputVariables.Where(x => !x.Equals(regData.TargetVariable)); regData.AllowedInputVariables = regData.InputVariables.Where(x => !x.Equals(regData.TargetVariable)).ToArray(); return regData;
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/ValueGenerator.cs

 r7664 public class ValueGenerator { protected static FastRandom rand = new FastRandom(); public static double[,] Transformation(List> data) { if (!data.All(x => x.Count.Equals(data.First().Count))) throw new ArgumentException("Can't create jagged array."); double[,] values = new double[data.First().Count, data.Count]; for (int i = 0; i < values.GetLength(0); i++) { for (int j = 0; j < values.GetLength(1); j++) { values[i, j] = data[j][i]; } } return values; } public static List GenerateSteps(double start, double end, double stepWidth) {
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Various/BreimanOne.cs

 r7666 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 5001; } } protected static FastRandom rand = new FastRandom(); protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); List values = new List() { -1, 1 }; data.Add(results); return ValueGenerator.Transformation(data); return data; }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Various/PolyTen.cs

 r7666 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 250; } } protected override int TestPartitionEnd { get { return 500; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Various/SpatialCoevolution.cs

 r7666 } protected override string TargetVariable { get { return "F"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y", "F" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X", "Y" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 250; } } protected override int TestPartitionEnd { get { return 500; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7666 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 3025; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "X3", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2", "X3" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 300; } } protected override int TestPartitionEnd { get { return 3700; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 50; } } protected override int TestPartitionEnd { get { return 2157; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 300; } } protected override int TestPartitionEnd { get { return 1300; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X" }; } } protected override string[] InputVariables { get { return new string[] { "X", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionEnd { get { return 321; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); data.Add(ValueGenerator.GenerateSteps(0.05, 10, 0.1)); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 601; } } protected override int TestPartitionEnd { get { return 3155; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); List> trainingData = new List>() { data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 30; } } protected override int TestPartitionEnd { get { return 1461; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); List oneVariableTestData = ValueGenerator.GenerateSteps(-0.05, 6.05, 0.02); data.Add(results); return ValueGenerator.Transformation(data); return data; } }

 r7664 } protected override string TargetVariable { get { return "Y"; } } protected override IEnumerable InputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5", "Y" }; } } protected override IEnumerable AllowedInputVariables { get { return new List() { "X1", "X2", "X3", "X4", "X5" }; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 1024; } } protected override int TestPartitionEnd { get { return 6024; } } protected override double[,] GenerateValues() { protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(results); return ValueGenerator.Transformation(data); return data; } }
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Views/3.4/Plugin.cs

 r7667 namespace HeuristicLab.Problems.Instances.Views { [Plugin("HeuristicLab.Problems.Instances.Views", "3.4.0.7666")] [Plugin("HeuristicLab.Problems.Instances.Views", "3.4.0.7667")] [PluginFile("HeuristicLab.Problems.Instances.Views-3.4.dll", PluginFileType.Assembly)] [PluginDependency("HeuristicLab.Common", "3.3")]
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Views/3.4/Properties/AssemblyInfo.cs

 r7667 // by using the '*' as shown below: [assembly: AssemblyVersion("3.4.0.0")] [assembly: AssemblyFileVersion("3.4.2.7666")] [assembly: AssemblyFileVersion("3.4.2.7667")]
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances/3.3/HeuristicLab.Problems.Instances-3.3.csproj

 r7664
• ## branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances/3.3/Types/RegressionData.cs

 r7603 #endregion using System.Collections.Generic; namespace HeuristicLab.Problems.Instances { /// public string Description { get; set; } /// /// The target variable of a problem. /// public string TargetVariable { get; set; } public IEnumerable InputVariables { get; set; } public IEnumerable AllowedInputVariables { get; set; } /// /// All variables which are in the problem. /// public string[] InputVariables { get; set; } /// /// All variables which shall be used to solve the problem. /// (Variables wich are not contained by AllowedInputVariables won't be checked initialy, when the problem is created.) /// public string[] AllowedInputVariables { get; set; } /// /// Start of the trainings partition /// public int TrainingPartitionStart { get; set; } /// /// End of the trainings partition /// public int TrainingPartitionEnd { get; set; } /// /// Start of the test partition /// public int TestPartitionStart { get; set; } /// /// End of the test partition /// public int TestPartitionEnd { get; set; } /// /// Contains all the values of the variables /// public double[,] Values { get; set; } }
Note: See TracChangeset for help on using the changeset viewer.