Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
08/09/11 18:58:09 (13 years ago)
Author:
gkronber
Message:

#1615 clone problem before creating a solution

Location:
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs

    r6240 r6649  
    106106
    107107      var model = LinearDiscriminantAnalysis.CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData, rows);
    108       SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, problemData);
     108      SymbolicDiscriminantFunctionClassificationSolution solution = new SymbolicDiscriminantFunctionClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
    109109
    110110      return solution;
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs

    r6555 r6649  
    110110      addition.AddSubtree(cNode);
    111111
    112       SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), problemData);
     112      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter()), (IRegressionProblemData)problemData.Clone());
    113113      solution.Model.Name = "Linear Regression Model";
    114114      return solution;
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs

    r6633 r6649  
    9595      relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows);
    9696
    97       MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution(problemData, new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
     97      MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution((IClassificationProblemData)problemData.Clone(), new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
    9898      return solution;
    9999    }
Note: See TracChangeset for help on using the changeset viewer.