- Timestamp:
- 04/04/11 15:38:16 (14 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveMeanSquaredErrorTreeSizeEvaluator.cs
r5906 r5942 56 56 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows); 57 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 58 Online EvaluatorError errorState;59 double mse = OnlineMeanSquaredError Evaluator.Calculate(originalValues, boundedEstimationValues, out errorState);60 if (errorState != Online EvaluatorError.None) mse = double.NaN;58 OnlineCalculatorError errorState; 59 double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState); 60 if (errorState != OnlineCalculatorError.None) mse = double.NaN; 61 61 return new double[2] { mse, solution.Length }; 62 62 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator.cs
r5906 r5942 34 34 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 35 35 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows); 36 Online EvaluatorError errorState;37 double r2 = OnlinePearsonsRSquared Evaluator.Calculate(estimatedValues, originalValues, out errorState);38 if (errorState != Online EvaluatorError.None) r2 = 0.0;36 OnlineCalculatorError errorState; 37 double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState); 38 if (errorState != OnlineCalculatorError.None) r2 = 0.0; 39 39 return new double[] { r2, solution.Length }; 40 40 -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs
r5906 r5942 56 56 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows); 57 57 IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 58 Online EvaluatorError errorState;59 double mse = OnlineMeanSquaredError Evaluator.Calculate(originalValues, boundedEstimationValues, out errorState);60 if (errorState != Online EvaluatorError.None) return double.NaN;58 OnlineCalculatorError errorState; 59 double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState); 60 if (errorState != OnlineCalculatorError.None) return double.NaN; 61 61 else return mse; 62 62 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs
r5906 r5942 55 55 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 56 56 IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows); 57 Online EvaluatorError errorState;58 double r2 = OnlinePearsonsRSquared Evaluator.Calculate(estimatedValues, originalValues, out errorState);59 if (errorState != Online EvaluatorError.None) return 0.0;57 OnlineCalculatorError errorState; 58 double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState); 59 if (errorState != OnlineCalculatorError.None) return 0.0; 60 60 else return r2; 61 61 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
r5894 r5942 124 124 double alpha; 125 125 double beta; 126 Online EvaluatorError errorState;126 OnlineCalculatorError errorState; 127 127 OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState); 128 if (errorState != Online EvaluatorError.None) return;128 if (errorState != OnlineCalculatorError.None) return; 129 129 130 130 ConstantTreeNode alphaTreeNode = null;
Note: See TracChangeset
for help on using the changeset viewer.