Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/04/11 15:38:16 (14 years ago)
Author:
mkommend
Message:

#1453: Renamed IOnlineEvaluator to IOnlineCalculator

Location:
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveMeanSquaredErrorTreeSizeEvaluator.cs

    r5906 r5942  
    5656      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
    5757      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
    58       OnlineEvaluatorError errorState;
    59       double mse = OnlineMeanSquaredErrorEvaluator.Calculate(originalValues, boundedEstimationValues, out errorState);
    60       if (errorState != OnlineEvaluatorError.None) mse = double.NaN;
     58      OnlineCalculatorError errorState;
     59      double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState);
     60      if (errorState != OnlineCalculatorError.None) mse = double.NaN;
    6161      return new double[2] { mse, solution.Length };
    6262    }
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectivePearsonRSquaredTreeSizeEvaluator.cs

    r5906 r5942  
    3434      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    3535      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
    36       OnlineEvaluatorError errorState;
    37       double r2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedValues, originalValues, out errorState);
    38       if (errorState != OnlineEvaluatorError.None) r2 = 0.0;
     36      OnlineCalculatorError errorState;
     37      double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
     38      if (errorState != OnlineCalculatorError.None) r2 = 0.0;
    3939      return new double[] { r2, solution.Length };
    4040
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs

    r5906 r5942  
    5656      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
    5757      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
    58       OnlineEvaluatorError errorState;
    59       double mse = OnlineMeanSquaredErrorEvaluator.Calculate(originalValues, boundedEstimationValues, out errorState);
    60       if (errorState != OnlineEvaluatorError.None) return double.NaN;
     58      OnlineCalculatorError errorState;
     59      double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState);
     60      if (errorState != OnlineCalculatorError.None) return double.NaN;
    6161      else return mse;
    6262    }
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs

    r5906 r5942  
    5555      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
    5656      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
    57       OnlineEvaluatorError errorState;
    58       double r2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedValues, originalValues, out errorState);
    59       if (errorState != OnlineEvaluatorError.None) return 0.0;
     57      OnlineCalculatorError errorState;
     58      double r2 = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
     59      if (errorState != OnlineCalculatorError.None) return 0.0;
    6060      else return r2;
    6161    }
  • trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs

    r5894 r5942  
    124124      double alpha;
    125125      double beta;
    126       OnlineEvaluatorError errorState;
     126      OnlineCalculatorError errorState;
    127127      OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState);
    128       if (errorState != OnlineEvaluatorError.None) return;
     128      if (errorState != OnlineCalculatorError.None) return;
    129129
    130130      ConstantTreeNode alphaTreeNode = null;
Note: See TracChangeset for help on using the changeset viewer.