Changeset 5894 for trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification
- Timestamp:
- 03/30/11 18:04:03 (14 years ago)
- Location:
- trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolution.cs
r5809 r5894 85 85 IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes); 86 86 87 double trainingAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues); 88 double testAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTestClassValues, originalTestClassValues); 87 OnlineEvaluatorError errorState; 88 double trainingAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState); 89 if (errorState != OnlineEvaluatorError.None) trainingAccuracy = double.NaN; 90 double testAccuracy = OnlineAccuracyEvaluator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState); 91 if (errorState != OnlineEvaluatorError.None) testAccuracy = double.NaN; 89 92 90 93 TrainingAccuracy = trainingAccuracy; -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolution.cs
r5889 r5894 105 105 IEnumerable<double> originalTestValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes); 106 106 107 double trainingMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues); 108 double testMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTestValues, originalTestValues); 109 double trainingR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues); 110 double testR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTestValues, originalTestValues); 107 OnlineEvaluatorError errorState; 108 double trainingMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState); 109 TrainingMeanSquaredError = errorState == OnlineEvaluatorError.None ? trainingMSE : double.NaN; 110 double testMSE = OnlineMeanSquaredErrorEvaluator.Calculate(estimatedTestValues, originalTestValues, out errorState); 111 TestMeanSquaredError = errorState == OnlineEvaluatorError.None ? testMSE : double.NaN; 111 112 112 TrainingMeanSquaredError = trainingMSE;113 T estMeanSquaredError = testMSE;114 TrainingRSquared = trainingR2;115 TestRSquared = testR2;113 double trainingR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTrainingValues, originalTrainingValues, out errorState); 114 TrainingRSquared = errorState == OnlineEvaluatorError.None ? trainingR2 : double.NaN; 115 double testR2 = OnlinePearsonsRSquaredEvaluator.Calculate(estimatedTestValues, originalTestValues, out errorState); 116 TestRSquared = errorState == OnlineEvaluatorError.None ? testR2 : double.NaN; 116 117 } 117 118 -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ThresholdCalculators/NormalDistributionCutPointsThresholdCalculator.cs
r5849 r5894 64 64 double classValue = group.Key; 65 65 double mean, variance; 66 OnlineMeanAndVarianceCalculator.Calculate(estimatedClassValues, out mean, out variance); 67 classMean[classValue] = mean; 68 classStdDev[classValue] = Math.Sqrt(variance); 66 OnlineEvaluatorError meanErrorState, varianceErrorState; 67 OnlineMeanAndVarianceCalculator.Calculate(estimatedClassValues, out mean, out variance, out meanErrorState, out varianceErrorState); 68 69 if (meanErrorState == OnlineEvaluatorError.None && varianceErrorState == OnlineEvaluatorError.None) { 70 classMean[classValue] = mean; 71 classStdDev[classValue] = Math.Sqrt(variance); 72 } 69 73 } 70 74 double[] originalClasses = classMean.Keys.OrderBy(x => x).ToArray();
Note: See TracChangeset
for help on using the changeset viewer.