Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
03/30/10 19:38:22 (15 years ago)
Author:
gkronber
Message:

Worked on symbolic expression tree encoding.
Added view for expression trees (simple textual view in s-exp format).
Implemented SubtreeCrossover.
Fixed bugs in ProbabilisticTreeCreator.
#937 (Data types and operators for symbolic expression tree encoding)

Location:
trunk/sources/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.3/Crossovers
Files:
1 deleted
1 moved

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.3/Crossovers/SubtreeCrossover.cs

    r3232 r3237  
    11#region License Information
    22/* HeuristicLab
    3  * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    44 *
    55 * This file is part of HeuristicLab.
     
    2222using System.Collections.Generic;
    2323using HeuristicLab.Core;
    24 using HeuristicLab.GP.Interfaces;
     24using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     25using HeuristicLab.Data;
     26using System.Linq;
     27using System;
     28using HeuristicLab.Parameters;
     29namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
    2530
    26 namespace HeuristicLab.Encodings.SymbolicExpressionTree {
    27   public class StandardCrossOver : SizeConstrictedGPCrossoverBase {
    28     private int MaxRecombinationTries { get { return 20; } }
    2931
    30     public override string Description {
    31       get {
    32         return @"Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
    33 And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
    34 When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
    35 until a valid configuration is found.";
     32  /// <summary>
     33  /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
     34  /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
     35  /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
     36  /// until a valid configuration is found.
     37  /// </summary> 
     38  [Item("SubtreeCrossover", "An operator which performs subtree swapping crossover.")]
     39  [StorableClass]
     40  public class SubtreeCrossover : SymbolicExpressionTreeCrossover {
     41    private const int MAX_TRIES = 100;
     42
     43    public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
     44      get { return (IValueLookupParameter<PercentValue>)Parameters["InternalCrossoverPointProbability"]; }
     45    }
     46
     47    public SubtreeCrossover()
     48      : base() {
     49      Parameters.Add(new ValueLookupParameter<PercentValue>("InternalCrossoverPointProbability", "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
     50    }
     51
     52    protected override SymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionGrammar grammar,
     53      SymbolicExpressionTree parent0, SymbolicExpressionTree parent1,
     54      IntValue maxTreeSize, IntValue maxTreeHeight) {
     55      return Apply(random, grammar, parent0, parent1, InternalCrossoverPointProbabilityParameter.ActualValue.Value, maxTreeSize.Value, maxTreeHeight.Value);
     56    }
     57
     58    public static SymbolicExpressionTree Apply(IRandom random, ISymbolicExpressionGrammar grammar,
     59      SymbolicExpressionTree parent0, SymbolicExpressionTree parent1,
     60      double internalCrossoverPointProbability, int maxTreeSize, int maxTreeHeight) {
     61      int tries = 0;
     62      while (tries++ < MAX_TRIES) {
     63        // select a random crossover point in the first parent
     64        SymbolicExpressionTreeNode crossoverPoint0;
     65        int replacedSubtreeIndex;
     66        SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, out crossoverPoint0, out replacedSubtreeIndex);
     67
     68        // calculate the max size and height that the inserted branch can have
     69        int maxInsertedBranchSize = maxTreeSize - (parent0.Size - crossoverPoint0.SubTrees[replacedSubtreeIndex].GetSize());
     70        int maxInsertedBranchHeight = maxTreeHeight - GetBranchLevel(parent0.Root, crossoverPoint0);
     71
     72        var allowedBranches = from branch in IterateNodes(parent1.Root)
     73                              where branch.GetSize() < maxInsertedBranchSize
     74                              where branch.GetHeight() < maxInsertedBranchHeight
     75                              where grammar.AllowedSymbols(crossoverPoint0.Symbol, replacedSubtreeIndex).Contains(branch.Symbol)
     76                              select branch;
     77
     78        if (allowedBranches.Count() > 0) {
     79          var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
     80
     81          // manipulate the tree of parent0 in place
     82          // replace the branch in tree0 with the selected branch from tree1
     83          crossoverPoint0.RemoveSubTree(replacedSubtreeIndex);
     84          crossoverPoint0.InsertSubTree(replacedSubtreeIndex, selectedBranch);
     85          return parent0;
     86        }
     87      }
     88
     89      // TODO: we should have a way to track the number of failed crossover attempts
     90      // for now just return the first parent unchanged
     91      return parent0;
     92    }
     93
     94    private static void SelectCrossoverPoint(IRandom random, SymbolicExpressionTree parent0, double internalNodeProbability, out SymbolicExpressionTreeNode crossoverPoint, out int subtreeIndex) {
     95      var crossoverPoints = from branch in IterateNodes(parent0.Root)
     96                            where branch.SubTrees.Count > 0
     97                            from index in Enumerable.Range(0, branch.SubTrees.Count)
     98                            let p = new { CrossoverPoint = branch, SubtreeIndex = index, IsLeaf = branch.SubTrees[index].SubTrees.Count == 0 }
     99                            select p;
     100      var internalCrossoverPoints = (from p in crossoverPoints
     101                                     where !p.IsLeaf
     102                                     select p).ToList();
     103      // select internal crossover point or leaf
     104      if (random.NextDouble() < internalNodeProbability && internalCrossoverPoints.Count > 0) {
     105        var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
     106        crossoverPoint = selectedCrossoverPoint.CrossoverPoint;
     107        subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
     108      } else {
     109        var leafCrossoverPoints = (from p in crossoverPoints
     110                                   where p.IsLeaf
     111                                   select p).ToList();
     112        var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
     113        crossoverPoint = selectedCrossoverPoint.CrossoverPoint;
     114        subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
    36115      }
    37116    }
    38117
    39     internal override IFunctionTree Cross(TreeGardener gardener, IRandom random, IFunctionTree tree0, IFunctionTree tree1, int maxTreeSize, int maxTreeHeight) {
    40       int tries = 0;
    41       List<IFunctionTree> allowedCrossoverPoints = null;
    42       IFunctionTree parent0;
    43       int replacedChildIndex;
    44       do {
    45         // select a random crossover point in the first parent tree0
    46         parent0 = null;
    47         while (parent0 == null) parent0 = gardener.GetRandomParentNode(tree0);
    48         // select a random branch to replace
    49         replacedChildIndex = random.Next(parent0.SubTrees.Count);
    50 
    51         // calculate the max size and height that the inserted branch can have
    52         int maxInsertedBranchSize = maxTreeSize - (tree0.GetSize() - parent0.SubTrees[replacedChildIndex].GetSize());
    53         int maxInsertedBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, parent0); // branchlevel is 1 if tree0==parent0
    54 
    55         IList<IFunction> allowedFunctions = new List<IFunction>(gardener.GetAllowedSubFunctions(parent0.Function, replacedChildIndex));
    56         allowedCrossoverPoints = GetPossibleCrossoverPoints(tree1, maxInsertedBranchSize, maxInsertedBranchHeight, allowedFunctions);
    57       } while (allowedCrossoverPoints.Count == 0 && tries++ < MaxRecombinationTries);
    58 
    59       if (allowedCrossoverPoints.Count > 0) {
    60         IFunctionTree branch1 = allowedCrossoverPoints[random.Next(allowedCrossoverPoints.Count)];
    61 
    62         // replace the branch in tree0 with the selected branch from tree1
    63         parent0.RemoveSubTree(replacedChildIndex);
    64         parent0.InsertSubTree(replacedChildIndex, branch1);
     118    private static SymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<SymbolicExpressionTreeNode> branches, double internalNodeProbability) {
     119      if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
     120      var groupedBranches = from branch in branches
     121                            group branch by branch.SubTrees.Count into g
     122                            select g;
     123      var allowedInternalBranches = (from g in groupedBranches
     124                                     where g.Key > 0
     125                                     from branch in g
     126                                     select branch).ToList();
     127      if (random.NextDouble() < internalNodeProbability && allowedInternalBranches.Count > 0) {
     128        return allowedInternalBranches[random.Next(allowedInternalBranches.Count)];
     129      } else {
     130        var allowedLeafBranches = (from g in groupedBranches
     131                                   where g.Key == 0
     132                                   from leaf in g
     133                                   select leaf).ToList();
     134        return allowedLeafBranches[random.Next(allowedLeafBranches.Count)];
    65135      }
    66       return tree0;
    67136    }
    68137
    69     private List<IFunctionTree> GetPossibleCrossoverPoints(IFunctionTree tree, int maxInsertedBranchSize, int maxInsertedBranchHeight, IList<IFunction> allowedFunctions) {
    70       List<IFunctionTree> crossoverPoints = new List<IFunctionTree>();
    71       foreach (IFunctionTree possiblePoint in TreeGardener.GetAllSubTrees(tree)) {
    72         if (allowedFunctions.Contains(possiblePoint.Function) && possiblePoint.GetSize() <= maxInsertedBranchSize && possiblePoint.GetHeight() <= maxInsertedBranchHeight)
    73           crossoverPoints.Add(possiblePoint);
     138    private static IEnumerable<SymbolicExpressionTreeNode> IterateNodes(SymbolicExpressionTreeNode root) {
     139      foreach (var subTree in root.SubTrees) {
     140        foreach (var branch in IterateNodes(subTree)) {
     141          yield return branch;
     142        }
    74143      }
    75       return crossoverPoints;
     144      yield return root;
     145    }
     146
     147    private static int GetBranchLevel(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode point) {
     148      if (root == point) return 0;
     149      foreach (var subtree in root.SubTrees) {
     150        int branchLevel = GetBranchLevel(subtree, point);
     151        if (branchLevel < int.MaxValue) return 1 + branchLevel;
     152      }
     153      return int.MaxValue;
    76154    }
    77155  }
Note: See TracChangeset for help on using the changeset viewer.