1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using System.Linq;
|
---|
27 | using System;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
30 |
|
---|
31 |
|
---|
32 | /// <summary>
|
---|
33 | /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
|
---|
34 | /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
|
---|
35 | /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
|
---|
36 | /// until a valid configuration is found.
|
---|
37 | /// </summary>
|
---|
38 | [Item("SubtreeCrossover", "An operator which performs subtree swapping crossover.")]
|
---|
39 | [StorableClass]
|
---|
40 | public class SubtreeCrossover : SymbolicExpressionTreeCrossover {
|
---|
41 | private const int MAX_TRIES = 100;
|
---|
42 |
|
---|
43 | public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
|
---|
44 | get { return (IValueLookupParameter<PercentValue>)Parameters["InternalCrossoverPointProbability"]; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public SubtreeCrossover()
|
---|
48 | : base() {
|
---|
49 | Parameters.Add(new ValueLookupParameter<PercentValue>("InternalCrossoverPointProbability", "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
|
---|
50 | }
|
---|
51 |
|
---|
52 | protected override SymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionGrammar grammar,
|
---|
53 | SymbolicExpressionTree parent0, SymbolicExpressionTree parent1,
|
---|
54 | IntValue maxTreeSize, IntValue maxTreeHeight) {
|
---|
55 | return Apply(random, grammar, parent0, parent1, InternalCrossoverPointProbabilityParameter.ActualValue.Value, maxTreeSize.Value, maxTreeHeight.Value);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public static SymbolicExpressionTree Apply(IRandom random, ISymbolicExpressionGrammar grammar,
|
---|
59 | SymbolicExpressionTree parent0, SymbolicExpressionTree parent1,
|
---|
60 | double internalCrossoverPointProbability, int maxTreeSize, int maxTreeHeight) {
|
---|
61 | int tries = 0;
|
---|
62 | while (tries++ < MAX_TRIES) {
|
---|
63 | // select a random crossover point in the first parent
|
---|
64 | SymbolicExpressionTreeNode crossoverPoint0;
|
---|
65 | int replacedSubtreeIndex;
|
---|
66 | SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, out crossoverPoint0, out replacedSubtreeIndex);
|
---|
67 |
|
---|
68 | // calculate the max size and height that the inserted branch can have
|
---|
69 | int maxInsertedBranchSize = maxTreeSize - (parent0.Size - crossoverPoint0.SubTrees[replacedSubtreeIndex].GetSize());
|
---|
70 | int maxInsertedBranchHeight = maxTreeHeight - GetBranchLevel(parent0.Root, crossoverPoint0);
|
---|
71 |
|
---|
72 | var allowedBranches = from branch in IterateNodes(parent1.Root)
|
---|
73 | where branch.GetSize() < maxInsertedBranchSize
|
---|
74 | where branch.GetHeight() < maxInsertedBranchHeight
|
---|
75 | where grammar.AllowedSymbols(crossoverPoint0.Symbol, replacedSubtreeIndex).Contains(branch.Symbol)
|
---|
76 | select branch;
|
---|
77 |
|
---|
78 | if (allowedBranches.Count() > 0) {
|
---|
79 | var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
|
---|
80 |
|
---|
81 | // manipulate the tree of parent0 in place
|
---|
82 | // replace the branch in tree0 with the selected branch from tree1
|
---|
83 | crossoverPoint0.RemoveSubTree(replacedSubtreeIndex);
|
---|
84 | crossoverPoint0.InsertSubTree(replacedSubtreeIndex, selectedBranch);
|
---|
85 | return parent0;
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | // TODO: we should have a way to track the number of failed crossover attempts
|
---|
90 | // for now just return the first parent unchanged
|
---|
91 | return parent0;
|
---|
92 | }
|
---|
93 |
|
---|
94 | private static void SelectCrossoverPoint(IRandom random, SymbolicExpressionTree parent0, double internalNodeProbability, out SymbolicExpressionTreeNode crossoverPoint, out int subtreeIndex) {
|
---|
95 | var crossoverPoints = from branch in IterateNodes(parent0.Root)
|
---|
96 | where branch.SubTrees.Count > 0
|
---|
97 | from index in Enumerable.Range(0, branch.SubTrees.Count)
|
---|
98 | let p = new { CrossoverPoint = branch, SubtreeIndex = index, IsLeaf = branch.SubTrees[index].SubTrees.Count == 0 }
|
---|
99 | select p;
|
---|
100 | var internalCrossoverPoints = (from p in crossoverPoints
|
---|
101 | where !p.IsLeaf
|
---|
102 | select p).ToList();
|
---|
103 | // select internal crossover point or leaf
|
---|
104 | if (random.NextDouble() < internalNodeProbability && internalCrossoverPoints.Count > 0) {
|
---|
105 | var selectedCrossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
|
---|
106 | crossoverPoint = selectedCrossoverPoint.CrossoverPoint;
|
---|
107 | subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
|
---|
108 | } else {
|
---|
109 | var leafCrossoverPoints = (from p in crossoverPoints
|
---|
110 | where p.IsLeaf
|
---|
111 | select p).ToList();
|
---|
112 | var selectedCrossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
|
---|
113 | crossoverPoint = selectedCrossoverPoint.CrossoverPoint;
|
---|
114 | subtreeIndex = selectedCrossoverPoint.SubtreeIndex;
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | private static SymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<SymbolicExpressionTreeNode> branches, double internalNodeProbability) {
|
---|
119 | if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
|
---|
120 | var groupedBranches = from branch in branches
|
---|
121 | group branch by branch.SubTrees.Count into g
|
---|
122 | select g;
|
---|
123 | var allowedInternalBranches = (from g in groupedBranches
|
---|
124 | where g.Key > 0
|
---|
125 | from branch in g
|
---|
126 | select branch).ToList();
|
---|
127 | if (random.NextDouble() < internalNodeProbability && allowedInternalBranches.Count > 0) {
|
---|
128 | return allowedInternalBranches[random.Next(allowedInternalBranches.Count)];
|
---|
129 | } else {
|
---|
130 | var allowedLeafBranches = (from g in groupedBranches
|
---|
131 | where g.Key == 0
|
---|
132 | from leaf in g
|
---|
133 | select leaf).ToList();
|
---|
134 | return allowedLeafBranches[random.Next(allowedLeafBranches.Count)];
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | private static IEnumerable<SymbolicExpressionTreeNode> IterateNodes(SymbolicExpressionTreeNode root) {
|
---|
139 | foreach (var subTree in root.SubTrees) {
|
---|
140 | foreach (var branch in IterateNodes(subTree)) {
|
---|
141 | yield return branch;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | yield return root;
|
---|
145 | }
|
---|
146 |
|
---|
147 | private static int GetBranchLevel(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode point) {
|
---|
148 | if (root == point) return 0;
|
---|
149 | foreach (var subtree in root.SubTrees) {
|
---|
150 | int branchLevel = GetBranchLevel(subtree, point);
|
---|
151 | if (branchLevel < int.MaxValue) return 1 + branchLevel;
|
---|
152 | }
|
---|
153 | return int.MaxValue;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|