- Timestamp:
- 07/17/21 18:34:49 (3 years ago)
- Location:
- stable
- Files:
-
- 5 edited
- 2 copied
Legend:
- Unmodified
- Added
- Removed
-
stable
- Property svn:mergeinfo changed
/trunk merged: 17344-17345,17347,17437,17441,18008,18018
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding
- Property svn:mergeinfo changed
/trunk/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding merged: 17344-17345,17347,17437,17441,18008,18018
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/Creators/BalancedTreeCreator.cs
r17345 r18019 26 26 using HeuristicLab.Common; 27 27 using HeuristicLab.Core; 28 using HeuristicLab.Data; 29 using HeuristicLab.Parameters; 28 30 using HeuristicLab.PluginInfrastructure; 29 31 using HeuristicLab.Random; … … 34 36 [Item("BalancedTreeCreator", "An operator that produces trees with a specified distribution")] 35 37 public class BalancedTreeCreator : SymbolicExpressionTreeCreator { 38 private const string IrregularityBiasParameterName = "IrregularityBias"; 39 40 public IFixedValueParameter<PercentValue> IrregularityBiasParameter { 41 get { return (IFixedValueParameter<PercentValue>)Parameters[IrregularityBiasParameterName]; } 42 } 43 44 public double IrregularityBias { 45 get { return IrregularityBiasParameter.Value.Value; } 46 set { IrregularityBiasParameter.Value.Value = value; } 47 } 48 36 49 [StorableConstructor] 37 50 protected BalancedTreeCreator(StorableConstructorFlag _) : base(_) { } 38 51 52 [StorableHook(HookType.AfterDeserialization)] 53 private void AfterDeserialization() { 54 if (!Parameters.ContainsKey(IrregularityBiasParameterName)) { 55 Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, "Allows to bias tree initialization towards less balanced/regular shapes. Set to 0% for most balanced and 100% for least balanced trees. (default = 0%)", new PercentValue(0.0))); 56 } 57 } 58 39 59 protected BalancedTreeCreator(BalancedTreeCreator original, Cloner cloner) : base(original, cloner) { } 40 60 41 public BalancedTreeCreator() { } 61 public BalancedTreeCreator() { 62 Parameters.Add(new FixedValueParameter<PercentValue>(IrregularityBiasParameterName, new PercentValue(0.0))); 63 } 42 64 43 65 public override IDeepCloneable Clone(Cloner cloner) { … … 46 68 47 69 public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth) { 48 return Create(random, grammar, maxLength, maxDepth );49 } 50 51 public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth ) {70 return Create(random, grammar, maxLength, maxDepth, IrregularityBias); 71 } 72 73 public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxLength, int maxDepth, double irregularityBias = 0) { 52 74 int targetLength = random.Next(3, maxLength); // because we have 2 extra nodes for the root and start symbols, and the end is exclusive 53 return CreateExpressionTree(random, grammar, targetLength, maxDepth); 54 } 55 56 private class SymbolCacheEntry { 57 public int MinSubtreeCount; 58 public int MaxSubtreeCount; 59 public int[] MaxChildArity; 60 } 61 62 private class SymbolCache { 63 public SymbolCache(ISymbolicExpressionGrammar grammar) { 64 Grammar = grammar; 65 } 66 67 public ISymbolicExpressionTreeNode SampleNode(IRandom random, ISymbol parent, int childIndex, int minArity, int maxArity) { 68 var symbols = new List<ISymbol>(); 69 var weights = new List<double>(); 70 foreach (var child in AllowedSymbols.Where(x => !(x is StartSymbol || x is Defun))) { 71 var t = Tuple.Create(parent, child); 72 if (!allowedCache.TryGetValue(t, out bool[] allowed)) { continue; } 73 if (!allowed[childIndex]) { continue; } 74 75 if (symbolCache.TryGetValue(child, out SymbolCacheEntry cacheItem)) { 76 if (cacheItem.MinSubtreeCount < minArity) { continue; } 77 if (cacheItem.MaxSubtreeCount > maxArity) { continue; } 78 } 79 80 symbols.Add(child); 81 weights.Add(child.InitialFrequency); 82 } 83 if (!symbols.Any()) { 84 throw new ArgumentException("SampleNode: parent symbol " + parent.Name 85 + " does not have any allowed child symbols with min arity " + minArity 86 + " and max arity " + maxArity + ". Please ensure the grammar is properly configured."); 87 } 88 var symbol = symbols.SampleProportional(random, 1, weights).First(); 89 var node = symbol.CreateTreeNode(); 90 if (node.HasLocalParameters) { 91 node.ResetLocalParameters(random); 92 } 93 return node; 94 } 95 96 public ISymbolicExpressionGrammar Grammar { 97 get { return grammar; } 98 set { 99 grammar = value; 100 RebuildCache(); 101 } 102 } 103 104 public IList<ISymbol> AllowedSymbols { get; private set; } 105 106 public SymbolCacheEntry this[ISymbol symbol] { 107 get { return symbolCache[symbol]; } 108 } 109 110 public bool[] this[ISymbol parent, ISymbol child] { 111 get { return allowedCache[Tuple.Create(parent, child)]; } 112 } 113 114 public bool HasUnarySymbols { get; private set; } 115 116 private void RebuildCache() { 117 AllowedSymbols = Grammar.AllowedSymbols.Where(x => x.InitialFrequency > 0 && !(x is ProgramRootSymbol)).ToList(); 118 119 allowedCache = new Dictionary<Tuple<ISymbol, ISymbol>, bool[]>(); 120 symbolCache = new Dictionary<ISymbol, SymbolCacheEntry>(); 121 122 SymbolCacheEntry TryAddItem(ISymbol symbol) { 123 if (!symbolCache.TryGetValue(symbol, out SymbolCacheEntry cacheItem)) { 124 cacheItem = new SymbolCacheEntry { 125 MinSubtreeCount = Grammar.GetMinimumSubtreeCount(symbol), 126 MaxSubtreeCount = Grammar.GetMaximumSubtreeCount(symbol) 127 }; 128 symbolCache[symbol] = cacheItem; 129 } 130 return cacheItem; 131 } 132 133 foreach (var parent in AllowedSymbols) { 134 var parentCacheEntry = TryAddItem(parent); 135 var maxChildArity = new int[parentCacheEntry.MaxSubtreeCount]; 136 137 if (!(parent is StartSymbol || parent is Defun)) { 138 HasUnarySymbols |= parentCacheEntry.MaxSubtreeCount == 1; 139 } 140 141 foreach (var child in AllowedSymbols) { 142 var childCacheEntry = TryAddItem(child); 143 var allowed = new bool[parentCacheEntry.MaxSubtreeCount]; 144 145 for (int childIndex = 0; childIndex < parentCacheEntry.MaxSubtreeCount; ++childIndex) { 146 allowed[childIndex] = Grammar.IsAllowedChildSymbol(parent, child, childIndex); 147 maxChildArity[childIndex] = Math.Max(maxChildArity[childIndex], allowed[childIndex] ? childCacheEntry.MaxSubtreeCount : 0); 148 } 149 allowedCache[Tuple.Create(parent, child)] = allowed; 150 } 151 parentCacheEntry.MaxChildArity = maxChildArity; 152 } 153 } 154 155 private ISymbolicExpressionGrammar grammar; 156 private Dictionary<Tuple<ISymbol, ISymbol>, bool[]> allowedCache; 157 private Dictionary<ISymbol, SymbolCacheEntry> symbolCache; 158 } 159 160 public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxDepth) { 75 return CreateExpressionTree(random, grammar, targetLength, maxDepth, irregularityBias); 76 } 77 78 public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxDepth, double irregularityBias = 1) { 161 79 // even lengths cannot be achieved without symbols of odd arity 162 80 // therefore we randomly pick a neighbouring odd length value 163 var symbolCache = new SymbolCache(grammar); 164 if (!symbolCache.HasUnarySymbols && targetLength % 2 == 0) { 165 targetLength += random.NextDouble() < 0.5 ? -1 : +1; 166 } 167 return CreateExpressionTree(random, symbolCache, targetLength, maxDepth); 168 } 169 170 private static ISymbolicExpressionTree CreateExpressionTree(IRandom random, SymbolCache symbolCache, int targetLength, int maxDepth) { 171 var allowedSymbols = symbolCache.AllowedSymbols; 172 var tree = MakeStump(random, symbolCache.Grammar); 173 var tuples = new List<NodeInfo>(targetLength) { 174 new NodeInfo { Node = tree.Root, Depth = 0, Arity = 1 }, 175 new NodeInfo { Node = tree.Root.GetSubtree(0), Depth = 1, Arity = 1 } 176 }; 177 targetLength -= 2; // remaining length; -2 because we already have a root and start node 178 int openSlots = 1; // remaining extension points; startNode has arity 1 179 180 for (int i = 1; i < tuples.Count; ++i) { 81 var tree = MakeStump(random, grammar); // create a stump consisting of just a ProgramRootSymbol and a StartSymbol 82 CreateExpression(random, tree.Root.GetSubtree(0), targetLength - tree.Length, maxDepth - 2, irregularityBias); // -2 because the stump has length 2 and depth 2 83 return tree; 84 } 85 86 private static ISymbolicExpressionTreeNode SampleNode(IRandom random, ISymbolicExpressionTreeGrammar grammar, IEnumerable<ISymbol> allowedSymbols, int minChildArity, int maxChildArity) { 87 var candidates = new List<ISymbol>(); 88 var weights = new List<double>(); 89 90 foreach (var s in allowedSymbols) { 91 var minSubtreeCount = grammar.GetMinimumSubtreeCount(s); 92 var maxSubtreeCount = grammar.GetMaximumSubtreeCount(s); 93 94 if (maxChildArity < minSubtreeCount || minChildArity > maxSubtreeCount) { continue; } 95 96 candidates.Add(s); 97 weights.Add(s.InitialFrequency); 98 } 99 var symbol = candidates.SampleProportional(random, 1, weights).First(); 100 var node = symbol.CreateTreeNode(); 101 if (node.HasLocalParameters) { 102 node.ResetLocalParameters(random); 103 } 104 return node; 105 } 106 107 public static void CreateExpression(IRandom random, ISymbolicExpressionTreeNode root, int targetLength, int maxDepth, double irregularityBias = 1) { 108 var grammar = root.Grammar; 109 var minSubtreeCount = grammar.GetMinimumSubtreeCount(root.Symbol); 110 var maxSubtreeCount = grammar.GetMaximumSubtreeCount(root.Symbol); 111 var arity = random.Next(minSubtreeCount, maxSubtreeCount + 1); 112 int openSlots = arity; 113 114 var allowedSymbols = grammar.AllowedSymbols.Where(x => !(x is ProgramRootSymbol || x is GroupSymbol || x is Defun || x is StartSymbol)).ToList(); 115 bool hasUnarySymbols = allowedSymbols.Any(x => grammar.GetMinimumSubtreeCount(x) <= 1 && grammar.GetMaximumSubtreeCount(x) >= 1); 116 117 if (!hasUnarySymbols && targetLength % 2 == 0) { 118 // without functions of arity 1 some target lengths cannot be reached 119 targetLength = random.NextDouble() < 0.5 ? targetLength - 1 : targetLength + 1; 120 } 121 122 var tuples = new List<NodeInfo>(targetLength) { new NodeInfo { Node = root, Depth = 0, Arity = arity } }; 123 124 // we use tuples.Count instead of targetLength in the if condition 125 // because depth limits may prevent reaching the target length 126 for (int i = 0; i < tuples.Count; ++i) { 181 127 var t = tuples[i]; 182 128 var node = t.Node; 183 var parentEntry = symbolCache[node.Symbol];184 129 185 130 for (int childIndex = 0; childIndex < t.Arity; ++childIndex) { 186 131 // min and max arity here refer to the required arity limits for the child node 187 int maxChildArity = t.Depth == maxDepth - 1 ? 0 : Math.Min(parentEntry.MaxChildArity[childIndex], targetLength - openSlots); 188 int minChildArity = Math.Min(1, maxChildArity); 189 var child = symbolCache.SampleNode(random, node.Symbol, childIndex, minChildArity, maxChildArity); 190 var childEntry = symbolCache[child.Symbol]; 191 var childArity = random.Next(childEntry.MinSubtreeCount, childEntry.MaxSubtreeCount + 1); 132 int minChildArity = 0; 133 int maxChildArity = 0; 134 135 var allowedChildSymbols = allowedSymbols.Where(x => grammar.IsAllowedChildSymbol(node.Symbol, x, childIndex)).ToList(); 136 137 // if we are reaching max depth we have to fill the slot with a leaf node (max arity will be zero) 138 // otherwise, find the maximum value from the grammar which does not exceed the length limit 139 if (t.Depth < maxDepth - 1 && openSlots < targetLength) { 140 141 // we don't want to allow sampling a leaf symbol if it prevents us from reaching the target length 142 // this should be allowed only when we have enough open expansion points (more than one) 143 // the random check against the irregularity bias helps to increase shape variability when the conditions are met 144 int minAllowedArity = allowedChildSymbols.Min(x => grammar.GetMaximumSubtreeCount(x)); 145 if (minAllowedArity == 0 && (openSlots - tuples.Count <= 1 || random.NextDouble() > irregularityBias)) { 146 minAllowedArity = 1; 147 } 148 149 // finally adjust min and max arity according to the expansion limits 150 int maxAllowedArity = allowedChildSymbols.Max(x => grammar.GetMaximumSubtreeCount(x)); 151 maxChildArity = Math.Min(maxAllowedArity, targetLength - openSlots); 152 minChildArity = Math.Min(minAllowedArity, maxChildArity); 153 } 154 155 // sample a random child with the arity limits 156 var child = SampleNode(random, grammar, allowedChildSymbols, minChildArity, maxChildArity); 157 158 // get actual child arity limits 159 minChildArity = Math.Max(minChildArity, grammar.GetMinimumSubtreeCount(child.Symbol)); 160 maxChildArity = Math.Min(maxChildArity, grammar.GetMaximumSubtreeCount(child.Symbol)); 161 minChildArity = Math.Min(minChildArity, maxChildArity); 162 163 // pick a random arity for the new child node 164 var childArity = random.Next(minChildArity, maxChildArity + 1); 192 165 var childDepth = t.Depth + 1; 193 166 node.AddSubtree(child); … … 196 169 } 197 170 } 198 return tree;199 171 } 200 172 … … 227 199 return tree; 228 200 } 201 202 public void CreateExpression(IRandom random, ISymbolicExpressionTreeNode seedNode, int maxTreeLength, int maxTreeDepth) { 203 CreateExpression(random, seedNode, maxTreeLength, maxTreeDepth, IrregularityBias); 204 } 229 205 #endregion 230 206 } -
stable/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding/3.4/HeuristicLab.Encodings.SymbolicExpressionTreeEncoding-3.4.csproj
r17105 r18019 129 129 <Compile Include="ArchitectureManipulators\SubroutineDuplicater.cs" /> 130 130 <Compile Include="ArchitectureManipulators\SymbolicExpressionTreeArchitectureManipulator.cs" /> 131 <Compile Include="Creators\BalancedTreeCreator.cs" /> 131 132 <Compile Include="Grammars\GrammarUtils.cs" /> 132 133 <Compile Include="SymbolicExpressionTreeProblem.cs" /> -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic
- Property svn:mergeinfo changed
/trunk/HeuristicLab.Problems.DataAnalysis.Symbolic merged: 17344
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r18016 r18019 150 150 <Compile Include="Converters\DerivativeCalculator.cs" /> 151 151 <Compile Include="Converters\TreeToAutoDiffTermConverter.cs" /> 152 <Compile Include="Creators\SymbolicDataAnalysisExpressionBalancedTreeCreator.cs" /> 152 153 <Compile Include="Crossovers\SymbolicDataAnalysisExpressionDiversityPreservingCrossover.cs" /> 153 154 <Compile Include="Formatters\InfixExpressionFormatter.cs" />
Note: See TracChangeset
for help on using the changeset viewer.