Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
12/02/20 15:45:54 (4 years ago)
Author:
bburlacu
Message:

#3090: Revert r17787 due to numerical precision issues.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/OnlinePearsonsRCalculator.cs

    r17787 r17788  
    2626namespace HeuristicLab.Problems.DataAnalysis {
    2727  public class OnlinePearsonsRCalculator : DeepCloneable, IOnlineCalculator {
    28     private double sumX;
    29     private double sumY;
    30     private double sumWe;
    31 
    32     private double sumXX;
    33     private double sumYY;
    34     private double sumXY;
    35 
    36     private OnlineCalculatorError errorState;
     28    private OnlineCovarianceCalculator covCalculator = new OnlineCovarianceCalculator();
     29    private OnlineMeanAndVarianceCalculator sxCalculator = new OnlineMeanAndVarianceCalculator();
     30    private OnlineMeanAndVarianceCalculator syCalculator = new OnlineMeanAndVarianceCalculator();
    3731
    3832    public double R {
    3933      get {
    40         if (!(sumXX > 0.0 && sumYY > 0.0)) {
    41           return (sumXX == sumYY) ? 1.0 : 0.0;
     34        double xVar = sxCalculator.PopulationVariance;
     35        double yVar = syCalculator.PopulationVariance;
     36        if (xVar.IsAlmost(0.0) || yVar.IsAlmost(0.0)) {
     37          return 0.0;
     38        } else {
     39          var r = covCalculator.Covariance / (Math.Sqrt(xVar) * Math.Sqrt(yVar));
     40          if (r < -1.0) r = -1.0;
     41          else if (r > 1.0) r = 1.0;
     42          return r;
    4243        }
    43         return sumXY / Math.Sqrt(sumXX * sumYY);
    4444      }
    4545    }
    46 
    47     public double MeanX { get { return sumX / sumWe; } }
    48 
    49     public double MeanY { get { return sumY / sumWe; } }
    50 
    51     public double NaiveCovariance { get { return sumXY / sumWe; } }
    52 
    53     public double SampleCovariance {
    54       get {
    55         if (sumWe > 1.0) {
    56           errorState = OnlineCalculatorError.None;
    57           return sumXY / (sumWe - 1);
    58         }
    59         errorState = OnlineCalculatorError.InsufficientElementsAdded;
    60         return double.NaN;
    61       }
    62     }
    63 
    64     public double NaiveVarianceX { get { return sumXX / sumWe; } }
    65 
    66     public double SampleVarianceX {
    67       get {
    68         if (sumWe > 1.0) {
    69           errorState = OnlineCalculatorError.None;
    70           return sumXX / (sumWe - 1);
    71         }
    72         errorState = OnlineCalculatorError.InsufficientElementsAdded;
    73         return double.NaN;
    74       }
    75     }
    76 
    77     public double NaiveStdevX { get { return Math.Sqrt(NaiveVarianceY); } }
    78 
    79     public double SampleStdevX { get { return Math.Sqrt(SampleVarianceX); } }
    80 
    81     public double NaiveVarianceY { get { return sumYY / sumWe; } }
    82 
    83     public double SampleVarianceY {
    84       get {
    85         if (sumWe > 1.0) {
    86           errorState = OnlineCalculatorError.None;
    87           return sumYY / (sumWe - 1);
    88         }
    89         errorState = OnlineCalculatorError.InsufficientElementsAdded;
    90         return double.NaN;
    91       }
    92     }
    93 
    94     public double NaiveStdevY { get { return Math.Sqrt(NaiveVarianceY); } }
    95 
    96     public double SampleStdevY { get { return Math.Sqrt(SampleVarianceX); } }
    9746
    9847    public OnlinePearsonsRCalculator() { }
     
    10049    protected OnlinePearsonsRCalculator(OnlinePearsonsRCalculator original, Cloner cloner)
    10150      : base(original, cloner) {
    102       sumX = original.sumX;
    103       sumY = original.sumY;
    104       sumXX = original.sumXX;
    105       sumYY = original.sumYY;
    106       sumXY = original.sumXY;
    107       sumWe = original.sumWe;
    108       errorState = original.ErrorState;
     51      covCalculator = cloner.Clone(original.covCalculator);
     52      sxCalculator = cloner.Clone(original.sxCalculator);
     53      syCalculator = cloner.Clone(original.syCalculator);
    10954    }
    11055    public override IDeepCloneable Clone(Cloner cloner) {
     
    11459    #region IOnlineCalculator Members
    11560    public OnlineCalculatorError ErrorState {
    116       get { return errorState; }
     61      get { return covCalculator.ErrorState | sxCalculator.PopulationVarianceErrorState | syCalculator.PopulationVarianceErrorState; }
    11762    }
    11863    public double Value {
     
    12065    }
    12166    public void Reset() {
    122       sumXX = sumYY = sumXY = sumX = sumY = sumWe = 0.0;
    123       errorState = OnlineCalculatorError.None;
     67      covCalculator.Reset();
     68      sxCalculator.Reset();
     69      syCalculator.Reset();
    12470    }
    12571
    12672    public void Add(double x, double y) {
    127       if (sumWe <= 0.0) {
    128         sumX = x;
    129         sumY = y;
    130         sumWe = 1;
    131         return;
    132       }
    133       // Delta to previous mean
    134       double deltaX = x * sumWe - sumX, deltaY = y * sumWe - sumY;
    135       double oldWe = sumWe;
    136       // Incremental update
    137       sumWe += 1;
    138       double f = 1.0 / (sumWe * oldWe);
    139       // Update
    140       sumXX += f * deltaX * deltaX;
    141       sumYY += f * deltaY * deltaY;
    142       // should equal weight * deltaY * neltaX!
    143       sumXY += f * deltaX * deltaY;
    144       // Update means
    145       sumX += x;
    146       sumY += y;
     73      // no need to check validity of values explicitly here as it is checked in all three evaluators
     74      covCalculator.Add(x, y);
     75      sxCalculator.Add(x);
     76      syCalculator.Add(y);
    14777    }
    14878
     
    15080
    15181    public static double Calculate(IEnumerable<double> first, IEnumerable<double> second, out OnlineCalculatorError errorState) {
    152       var x = first.GetEnumerator(); x.MoveNext();
    153       var y = second.GetEnumerator(); y.MoveNext();
    154       double sumXX = 0.0, sumYY = 0.0, sumXY = 0.0;
    155       double sumX = x.Current, sumY = y.Current;
    156       int i = 1;
     82      IEnumerator<double> firstEnumerator = first.GetEnumerator();
     83      IEnumerator<double> secondEnumerator = second.GetEnumerator();
     84      var calculator = new OnlinePearsonsRCalculator();
    15785
    158       // Inlined computation of Pearson correlation, to avoid allocating objects
    159       // This is a numerically stabilized version, avoiding sum-of-squares.
    160       while (x.MoveNext() & y.MoveNext()) {
    161         double xv = x.Current, yv = y.Current;
    162         // Delta to previous mean
    163         double deltaX = xv * i - sumX, deltaY = yv * i - sumY;
    164         // Increment count first
    165         double oldi = i; // Convert to double!
    166         ++i;
    167         double f = 1.0 / (i * oldi);
    168         // Update
    169         sumXX += f * deltaX * deltaX;
    170         sumYY += f * deltaY * deltaY;
    171         // should equal deltaY * deltaX!
    172         sumXY += f * deltaX * deltaY;
    173         // Update sums
    174         sumX += xv;
    175         sumY += yv;
     86      // always move forward both enumerators (do not use short-circuit evaluation!)
     87      while (firstEnumerator.MoveNext() & secondEnumerator.MoveNext()) {
     88        double original = firstEnumerator.Current;
     89        double estimated = secondEnumerator.Current;
     90        calculator.Add(original, estimated);
     91        if (calculator.ErrorState != OnlineCalculatorError.None) break;
    17692      }
    17793
    178       errorState = OnlineCalculatorError.None;
    179       // One or both series were constant:
    180       return !(sumXX > 0.0 && sumYY > 0.0) ? sumXX == sumYY ? 1.0 : 0.0 : //
    181           sumXY / Math.Sqrt(sumXX * sumYY);
     94      // check if both enumerators are at the end to make sure both enumerations have the same length
     95      if (calculator.ErrorState == OnlineCalculatorError.None &&
     96           (secondEnumerator.MoveNext() || firstEnumerator.MoveNext())) {
     97        throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
     98      } else {
     99        errorState = calculator.ErrorState;
     100        return calculator.R;
     101      }
    182102    }
    183103  }
Note: See TracChangeset for help on using the changeset viewer.