Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
01/10/19 15:40:44 (6 years ago)
Author:
gkronber
Message:

#2520: merged r16491:16528 from trunk to persistence branch

Location:
branches/2520_PersistenceReintegration
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • branches/2520_PersistenceReintegration

  • branches/2520_PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis

  • branches/2520_PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4

  • branches/2520_PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/NearestNeighbour/NearestNeighbourClassification.cs

    r16462 r16529  
    1 #region License Information
     1#region License Information
    22/* HeuristicLab
    33 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     
    4242    private const string NearestNeighbourClassificationModelResultName = "Nearest neighbour classification solution";
    4343    private const string WeightsParameterName = "Weights";
    44 
     44    private const string SelfMatchParameterName = "SelfMatch";
    4545
    4646    #region parameter properties
    4747    public IFixedValueParameter<IntValue> KParameter {
    4848      get { return (IFixedValueParameter<IntValue>)Parameters[KParameterName]; }
     49    }
     50    public IFixedValueParameter<BoolValue> SelfMatchParameter {
     51      get { return (IFixedValueParameter<BoolValue>)Parameters[SelfMatchParameterName]; }
    4952    }
    5053    public IValueParameter<DoubleArray> WeightsParameter {
     
    5356    #endregion
    5457    #region properties
     58    public bool SelfMatch {
     59      get { return SelfMatchParameter.Value.Value; }
     60      set { SelfMatchParameter.Value.Value = value; }
     61    }
    5562    public int K {
    5663      get { return KParameter.Value.Value; }
     
    7380    public NearestNeighbourClassification()
    7481      : base() {
     82      Parameters.Add(new FixedValueParameter<BoolValue>(SelfMatchParameterName, "Should we use equal points for classification?", new BoolValue(false)));
    7583      Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3)));
    7684      Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
     
    8391      if (!Parameters.ContainsKey(WeightsParameterName)) {
    8492        Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
     93      }
     94      if (!Parameters.ContainsKey(SelfMatchParameterName)) {
     95        Parameters.Add(new FixedValueParameter<BoolValue>(SelfMatchParameterName, "Should we use equal points for classification?", new BoolValue(false)));
    8596      }
    8697      #endregion
     
    95106      double[] weights = null;
    96107      if (Weights != null) weights = Weights.CloneAsArray();
    97       var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K, weights);
     108      var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K, SelfMatch, weights);
    98109      Results.Add(new Result(NearestNeighbourClassificationModelResultName, "The nearest neighbour classification solution.", solution));
    99110    }
    100111
    101     public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k, double[] weights = null) {
     112    public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k, bool selfMatch = false, double[] weights = null) {
    102113      var problemDataClone = (IClassificationProblemData)problemData.Clone();
    103       return new NearestNeighbourClassificationSolution(Train(problemDataClone, k, weights), problemDataClone);
     114      return new NearestNeighbourClassificationSolution(Train(problemDataClone, k, selfMatch, weights), problemDataClone);
    104115    }
    105116
    106     public static INearestNeighbourModel Train(IClassificationProblemData problemData, int k, double[] weights = null) {
     117    public static INearestNeighbourModel Train(IClassificationProblemData problemData, int k, bool selfMatch = false, double[] weights = null) {
    107118      return new NearestNeighbourModel(problemData.Dataset,
    108119        problemData.TrainingIndices,
    109120        k,
     121        selfMatch,
    110122        problemData.TargetVariable,
    111123        problemData.AllowedInputVariables,
Note: See TracChangeset for help on using the changeset viewer.