Free cookie consent management tool by TermsFeed Policy Generator

Changeset 16500 for branches


Ignore:
Timestamp:
01/04/19 17:37:13 (6 years ago)
Author:
mkommend
Message:

#2974: Added intermediate version of new constants optimization for profiling.

Location:
branches/2974_Constants_Optimization
Files:
2 added
1 deleted
7 edited

Legend:

Unmodified
Added
Removed
  • branches/2974_Constants_Optimization

    • Property svn:ignore
      • TabularUnified  

        old new  
        11packages
         2TestResults
  • TabularUnified branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression-3.4.csproj

    r16461 r16500  
    192192    <Compile Include="Plugin.cs" />
    193193    <Compile Include="SingleObjective\ConstantOptimizationAnalyzer.cs" />
    194     <Compile Include="SingleObjective\Evaluators\ConstantsOptimizationEvaluator.cs" />
    195194    <Compile Include="SingleObjective\Evaluators\SymbolicRegressionMeanRelativeErrorEvaluator.cs" />
    196195    <Compile Include="SingleObjective\SymbolicRegressionSolutionsAnalyzer.cs" />
  • TabularUnified branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Constants Optimization/Util.cs

    r16461 r16500  
    2323using System.Collections.Generic;
    2424using System.Linq;
     25using HeuristicLab.Common;
    2526using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
    2627using static HeuristicLab.Problems.DataAnalysis.Symbolic.TreeToAutoDiffTermConverter;
     
    4849    }
    4950
    50     public static Dictionary<DataForVariable, AutoDiff.Variable> ExtractParameters(IDataset dataset) {
    51       var parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
     51    public static List<DataForVariable> GenerateVariables(IDataset dataset) {
     52      var variables = new List<DataForVariable>();
    5253      foreach (var doubleVariable in dataset.DoubleVariables) {
    5354        var data = new DataForVariable(doubleVariable, string.Empty, 0);
    54         var param = new AutoDiff.Variable();
    55         parameters.Add(data, param);
     55        variables.Add(data);
    5656      }
    5757
     
    5959        foreach (var stringValue in dataset.GetStringValues(stringVariable).Distinct()) {
    6060          var data = new DataForVariable(stringVariable, stringValue, 0);
    61           var param = new AutoDiff.Variable();
    62           parameters.Add(data, param);
     61          variables.Add(data);
    6362        }
    6463      }
    65       return parameters;
     64      return variables;
     65    }
     66
     67    public static List<DataForVariable> ExtractLaggedVariables(ISymbolicExpressionTree tree) {
     68      var variables = new HashSet<DataForVariable>();
     69      foreach (var laggedNode in tree.IterateNodesPrefix().OfType<ILaggedTreeNode>()) {
     70        var laggedVariableTreeNode = laggedNode as LaggedVariableTreeNode;
     71        if (laggedVariableTreeNode != null) {
     72          var data = new DataForVariable(laggedVariableTreeNode.VariableName, string.Empty, laggedVariableTreeNode.Lag);
     73          if (!variables.Contains(data)) variables.Add(data);
     74        }
     75      }
     76      return variables.ToList();
    6677    }
    6778
     
    7990          for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
    8091            constants.Add(factorVarTreeNode.Weights[j]);
    81         }        
     92        } else throw new NotSupportedException(string.Format("Terminal nodes of type {0} are not supported.", node.GetType().GetPrettyName()));
    8293      }
    8394      return constants.ToArray();
     
    97108          for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
    98109            factorVarTreeNode.Weights[j] = constants[i++];
    99         }
     110        } else throw new NotSupportedException(string.Format("Terminal nodes of type {0} are not supported.", node.GetType().GetPrettyName()));
    100111      }
    101112    }
  • TabularUnified branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeToAutoDiffTermConverter.cs

    r16463 r16500  
    131131    }
    132132
    133     public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, bool addLinearScalingTerms, Dictionary<DataForVariable, AutoDiff.Variable> parameters,
    134       out ParametricFunction func,
    135       out ParametricFunctionGradient func_grad,
    136       out double[] initialConstants
    137   ) {
     133    public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool addLinearScalingTerms, IEnumerable<DataForVariable> variables,
     134      out IParametricCompiledTerm autoDiffTerm, out double[] initialConstants) {
    138135      // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree
    139       var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable, parameters);
     136      //TODO change ctor
     137      var transformator = new TreeToAutoDiffTermConverter(true);
     138      var parameters = new AutoDiff.Variable[variables.Count()];
     139
     140      int i = 0;
     141      foreach(var variable in variables) {
     142        var autoDiffVar = new AutoDiff.Variable();
     143        transformator.parameters.Add(variable, autoDiffVar);
     144        parameters[i] = autoDiffVar;
     145        i++;
     146      }
     147
    140148      AutoDiff.Term term;
    141149      try {
    142 
    143 
     150        term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
    144151        if (addLinearScalingTerms) {
    145           // scaling variables α, β are given at the beginning of the parameter vector
     152          // scaling variables α, β are given at the end of the parameter vector
    146153          var alpha = new AutoDiff.Variable();
    147154          var beta = new AutoDiff.Variable();
     155
     156          term = term * alpha + beta;
     157
     158          transformator.variables.Add(alpha);
    148159          transformator.variables.Add(beta);
    149           transformator.variables.Add(alpha);
    150           term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
    151           term = term * alpha + beta;
    152         } else {
    153           term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0));
    154         }
    155 
    156         var compiledTerm = term.Compile(transformator.variables.ToArray(), parameters.Values.ToArray());
    157         func = (vars, @params) => compiledTerm.Evaluate(vars, @params);
    158         func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params);
     160
     161          transformator.initialConstants.Add(1.0);
     162          transformator.initialConstants.Add(0.0);
     163        }
     164
     165        var compiledTerm = term.Compile(transformator.variables.ToArray(), parameters);
     166        autoDiffTerm = compiledTerm;
    159167        initialConstants = transformator.initialConstants.ToArray();
    160168
    161169        return true;
    162170      } catch (ConversionException) {
    163         func = null;
    164         func_grad = null;
     171        autoDiffTerm = null;
    165172        initialConstants = null;
    166173      }
     
    174181    private readonly bool makeVariableWeightsVariable;
    175182
    176     private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable, Dictionary<DataForVariable, AutoDiff.Variable> parameters = null) {
     183    private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable) {
    177184      this.makeVariableWeightsVariable = makeVariableWeightsVariable;
    178185      this.initialConstants = new List<double>();
    179       if (parameters == null)
    180         this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
    181       else
    182         this.parameters = parameters;
     186      this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>();
    183187      this.variables = new List<AutoDiff.Variable>();
    184188    }
  • TabularUnified branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj

    r16460 r16500  
    213213      <SubType>Code</SubType>
    214214    </Compile>
     215    <Compile Include="Constants Optimization\IConstantsOptimizer.cs" />
     216    <Compile Include="Constants Optimization\LMConstantsOptimizer.cs" />
    215217    <Compile Include="Constants Optimization\Util.cs" />
    216218    <Compile Include="Converters\LinearModelToTreeConverter.cs" />
  • TabularUnified branches/2974_Constants_Optimization/UnitTests/ConstantsOptimizationTests.cs

    r16461 r16500  
    2020#endregion
    2121
    22 using System;
    23 using System.Collections.Generic;
    24 using System.Linq;
    25 using HeuristicLab.Common;
    26 using HeuristicLab.Core;
    27 using HeuristicLab.Data;
    2822using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
    29 using HeuristicLab.Optimization;
    30 using HeuristicLab.Parameters;
    31 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    32 using HeuristicLab.Persistence.Default.Xml;
    3323using HeuristicLab.Problems.DataAnalysis;
    3424using HeuristicLab.Problems.DataAnalysis.Symbolic;
     
    3828
    3929using HeuristicLab.Problems.Instances.DataAnalysis;
    40 
    41 using System;
    4230using Microsoft.VisualStudio.TestTools.UnitTesting;
    43 using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
    4431
    4532namespace UnitTests {
     
    5744
    5845      var new_optimizedTree = (ISymbolicExpressionTree)tree.Clone();
    59       var new_result = ConstantsOptimizationEvaluator.OptimizeConstants(
    60         new SymbolicDataAnalysisExpressionTreeLinearInterpreter(),
    61         new_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling: true, maxIterations: 10);
     46      var new_result = LMConstantsOptimizer.OptimizeConstants(new_optimizedTree, problemData, problemData.TrainingIndices, applyLinearScaling: true, maxIterations: 10);
    6247
    6348      //check R² values
    64       Assert.AreEqual(old_result, new_result);
     49      //Assert.AreEqual(old_result, new_result);
    6550
    6651      //check numeric values of constants
    6752      var old_constants = Util.ExtractConstants(old_optimizedTree);
    6853      var new_constants = Util.ExtractConstants(new_optimizedTree);
    69       Assert.IsTrue(old_constants.SequenceEqual(new_constants));
    70     }
    71 
    72    
     54      //Assert.IsTrue(old_constants.SequenceEqual(new_constants));
     55
     56      for (int i = 0; i < old_constants.Length; i++) {
     57        Assert.AreEqual(old_constants[i], new_constants[i], 0.00000001);
     58      }
     59    }
     60
     61
    7362
    7463    [TestMethod]
  • TabularUnified branches/2974_Constants_Optimization/UnitTests/PerformanceTest.cs

    r16461 r16500  
    11using System;
    2 using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
     2using System.Collections.Generic;
     3using System.Diagnostics;
     4using System.Linq;
    35using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
    4 using HeuristicLab.Persistence.Default.Xml;
     6using HeuristicLab.Problems.DataAnalysis;
    57using HeuristicLab.Problems.DataAnalysis.Symbolic;
    68using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
    7 using HeuristicLab.Selection;
     9using HeuristicLab.Problems.Instances.DataAnalysis;
     10using HeuristicLab.Random;
    811using Microsoft.VisualStudio.TestTools.UnitTesting;
    9 using System.Linq;
    10 using HeuristicLab.Problems.Instances.DataAnalysis;
    11 using HeuristicLab.Problems.DataAnalysis;
    12 using HeuristicLab.Optimization;
    13 using HeuristicLab.ParallelEngine;
    1412
    1513namespace UnitTests {
    1614  [TestClass]
    1715  public class PerformanceTest {
    18     private static int seed = 1234;
     16    private static readonly int seed = 1234;
     17    private static readonly int totalRows = 1000;
     18    private static readonly int maxIterations = 10;
     19    private static readonly int repetitions = 5;
     20    private static readonly int maxTreeSize = 50;
    1921
    20     //TODO remove performance test
    2122    [TestMethod]
    2223    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
    2324    [TestProperty("Time", "long")]
    24     public void ConstantsOptimization_Tower_Algorithm() {
    25       var algorithm = CreateGpSymbolicRegressionSample();
    26       var problem = (SymbolicRegressionSingleObjectiveProblem)algorithm.Problem;
     25    public void New_ConstantsOptimization_Tower_Algorithm() {
     26      var twister = new MersenneTwister((uint)seed);
     27      var problemData = new RegressionRealWorldInstanceProvider().LoadData(new Tower());
     28      var rows = Enumerable.Range(0, totalRows);
    2729
    28       algorithm.MaximumGenerations.Value = 1;
    29       var evaluator = new ConstantsOptimizationEvaluator();
    30       evaluator.ConstantOptimizationIterations.Value = 5;
    31       problem.EvaluatorParameter.Value = evaluator;
    32 
    33       algorithm.Prepare();
    34       algorithm.Start();
    35     }
    36 
    37     private OffspringSelectionGeneticAlgorithm CreateGpSymbolicRegressionSample() {
    38       var osga = new OffspringSelectionGeneticAlgorithm();
    39       #region Problem Configuration
    40       var provider = new RegressionRealWorldInstanceProvider();
    41       var problemData =  provider.LoadData(new Tower());
    42       var problem = new SymbolicRegressionSingleObjectiveProblem();
    43       problem.ProblemData = problemData;
    44       problem.Load(problemData);
    45       problem.BestKnownQuality.Value = 1.0;
    46 
    47       #region configure grammar
    48 
    49       var grammar = (TypeCoherentExpressionGrammar)problem.SymbolicExpressionTreeGrammar;
     30      var grammar = new TypeCoherentExpressionGrammar();
    5031      grammar.ConfigureAsDefaultRegressionGrammar();
    5132
    52       //symbols square, power, squareroot, root, log, exp, sine, cosine, tangent, variable
    53       var square = grammar.Symbols.OfType<Square>().Single();
    54       var power = grammar.Symbols.OfType<Power>().Single();
    55       var squareroot = grammar.Symbols.OfType<SquareRoot>().Single();
    56       var root = grammar.Symbols.OfType<Root>().Single();
    57       var cube = grammar.Symbols.OfType<Cube>().Single();
    58       var cuberoot = grammar.Symbols.OfType<CubeRoot>().Single();
    59       var log = grammar.Symbols.OfType<Logarithm>().Single();
    60       var exp = grammar.Symbols.OfType<Exponential>().Single();
    61       var sine = grammar.Symbols.OfType<Sine>().Single();
    62       var cosine = grammar.Symbols.OfType<Cosine>().Single();
    63       var tangent = grammar.Symbols.OfType<Tangent>().Single();
    64       var variable = grammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.Variable>().Single();
    65       var powerSymbols = grammar.Symbols.Single(s => s.Name == "Power Functions");
    66       powerSymbols.Enabled = true;
     33      var trees = CreateRandomTrees(twister, problemData.Dataset, grammar, 1000, 1, maxTreeSize, 0, 0);
     34      foreach (SymbolicExpressionTree tree in trees) {
     35        InitTree(tree, twister, problemData.AllowedInputVariables.ToList());
     36      }
    6737
    68       square.Enabled = true;
    69       square.InitialFrequency = 1.0;
    70       foreach (var allowed in grammar.GetAllowedChildSymbols(square))
    71         grammar.RemoveAllowedChildSymbol(square, allowed);
    72       foreach (var allowed in grammar.GetAllowedChildSymbols(square, 0))
    73         grammar.RemoveAllowedChildSymbol(square, allowed, 0);
    74       grammar.AddAllowedChildSymbol(square, variable);
     38      Console.WriteLine("Random tree constants optimization performance of new method:");
    7539
    76       power.Enabled = false;
     40      //warm up
     41      for (int i = 0; i < trees.Length; i++) {
     42        double quality = LMConstantsOptimizer.OptimizeConstants(trees[i], problemData, rows, true, maxIterations);
     43      }
    7744
    78       squareroot.Enabled = false;
    79       foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot))
    80         grammar.RemoveAllowedChildSymbol(squareroot, allowed);
    81       foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot, 0))
    82         grammar.RemoveAllowedChildSymbol(squareroot, allowed, 0);
    83       grammar.AddAllowedChildSymbol(squareroot, variable);
     45      Stopwatch watch = new Stopwatch();
     46      for (int rep = 0; rep < repetitions; rep++) {
     47        watch.Start();
     48        for (int i = 0; i < trees.Length; i++) {
     49          double quality = LMConstantsOptimizer.OptimizeConstants(trees[i], problemData, rows, true, maxIterations);
     50        }
     51        watch.Stop();
     52        Console.WriteLine("Iteration " + rep + "\t\t" + " Elapsed time: \t" + watch.ElapsedMilliseconds + " ms \t\t" +
     53          "Time per tree: " + watch.ElapsedMilliseconds / 1000.0 / trees.Length);
     54        watch.Reset();
     55      }
     56    }
     57    [TestMethod]
     58    [TestCategory("Problems.DataAnalysis.Symbolic.Regression")]
     59    [TestProperty("Time", "long")]
     60    public void Old_ConstantsOptimization_Tower_Algorithm() {
     61      var twister = new MersenneTwister((uint)seed);
     62      var problemData = new RegressionRealWorldInstanceProvider().LoadData(new Tower());
     63      var rows = Enumerable.Range(0, totalRows);
    8464
    85       cube.Enabled = false;
    86       cuberoot.Enabled = false;
    87       root.Enabled = false;
     65      var grammar = new TypeCoherentExpressionGrammar();
     66      grammar.ConfigureAsDefaultRegressionGrammar();
    8867
    89       log.Enabled = true;
    90       log.InitialFrequency = 1.0;
    91       foreach (var allowed in grammar.GetAllowedChildSymbols(log))
    92         grammar.RemoveAllowedChildSymbol(log, allowed);
    93       foreach (var allowed in grammar.GetAllowedChildSymbols(log, 0))
    94         grammar.RemoveAllowedChildSymbol(log, allowed, 0);
    95       grammar.AddAllowedChildSymbol(log, variable);
     68      var trees = CreateRandomTrees(twister, problemData.Dataset, grammar, 1000, 1, maxTreeSize, 0, 0);
     69      foreach (SymbolicExpressionTree tree in trees) {
     70        InitTree(tree, twister, problemData.AllowedInputVariables.ToList());
     71      }
    9672
    97       exp.Enabled = true;
    98       exp.InitialFrequency = 1.0;
    99       foreach (var allowed in grammar.GetAllowedChildSymbols(exp))
    100         grammar.RemoveAllowedChildSymbol(exp, allowed);
    101       foreach (var allowed in grammar.GetAllowedChildSymbols(exp, 0))
    102         grammar.RemoveAllowedChildSymbol(exp, allowed, 0);
    103       grammar.AddAllowedChildSymbol(exp, variable);
     73      Console.WriteLine("Random tree constants optimization performance of existing method:");
     74      var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
    10475
    105       sine.Enabled = false;
    106       foreach (var allowed in grammar.GetAllowedChildSymbols(sine))
    107         grammar.RemoveAllowedChildSymbol(sine, allowed);
    108       foreach (var allowed in grammar.GetAllowedChildSymbols(sine, 0))
    109         grammar.RemoveAllowedChildSymbol(sine, allowed, 0);
    110       grammar.AddAllowedChildSymbol(sine, variable);
     76      //warm up
     77      for (int i = 0; i < trees.Length; i++) {
     78        double quality = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(
     79          interpreter, trees[i], problemData, rows, true, maxIterations);
     80      }
    11181
    112       cosine.Enabled = false;
    113       foreach (var allowed in grammar.GetAllowedChildSymbols(cosine))
    114         grammar.RemoveAllowedChildSymbol(cosine, allowed);
    115       foreach (var allowed in grammar.GetAllowedChildSymbols(cosine, 0))
    116         grammar.RemoveAllowedChildSymbol(cosine, allowed, 0);
    117       grammar.AddAllowedChildSymbol(cosine, variable);
    118 
    119       tangent.Enabled = false;
    120       foreach (var allowed in grammar.GetAllowedChildSymbols(tangent))
    121         grammar.RemoveAllowedChildSymbol(tangent, allowed);
    122       foreach (var allowed in grammar.GetAllowedChildSymbols(tangent, 0))
    123         grammar.RemoveAllowedChildSymbol(tangent, allowed, 0);
    124       grammar.AddAllowedChildSymbol(tangent, variable);
    125       #endregion
    126 
    127       problem.SymbolicExpressionTreeGrammar = grammar;
    128 
    129       // configure remaining problem parameters
    130       problem.MaximumSymbolicExpressionTreeLength.Value = 50;
    131       problem.MaximumSymbolicExpressionTreeDepth.Value = 12;
    132       problem.MaximumFunctionDefinitions.Value = 0;
    133       problem.MaximumFunctionArguments.Value = 0;
    134 
    135       var evaluator = new SymbolicRegressionConstantOptimizationEvaluator();
    136       evaluator.ConstantOptimizationIterations.Value = 5;
    137       problem.EvaluatorParameter.Value = evaluator;
    138       problem.RelativeNumberOfEvaluatedSamplesParameter.Hidden = true;
    139       problem.SolutionCreatorParameter.Hidden = true;
    140       #endregion
    141 
    142       #region Algorithm Configuration
    143       osga.Problem = problem;
    144       osga.Name = "Offspring Selection Genetic Programming - Symbolic Regression";
    145       osga.Description = "Genetic programming with strict offspring selection for solving a benchmark regression problem.";
    146       ConfigureOsGeneticAlgorithmParameters<GenderSpecificSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(osga, 100, 1, 25, 0.2, 50);
    147       var mutator = (MultiSymbolicExpressionTreeManipulator)osga.Mutator;
    148       mutator.Operators.OfType<FullTreeShaker>().Single().ShakingFactor = 0.1;
    149       mutator.Operators.OfType<OnePointShaker>().Single().ShakingFactor = 1.0;
    150 
    151       osga.Analyzer.Operators.SetItemCheckedState(
    152         osga.Analyzer.Operators
    153           .OfType<SymbolicRegressionSingleObjectiveOverfittingAnalyzer>()
    154           .Single(), false);
    155       osga.Analyzer.Operators.SetItemCheckedState(
    156         osga.Analyzer.Operators
    157           .OfType<SymbolicDataAnalysisAlleleFrequencyAnalyzer>()
    158           .First(), false);
    159 
    160       osga.ComparisonFactorModifierParameter.Hidden = true;
    161       osga.ComparisonFactorLowerBoundParameter.Hidden = true;
    162       osga.ComparisonFactorUpperBoundParameter.Hidden = true;
    163       osga.OffspringSelectionBeforeMutationParameter.Hidden = true;
    164       osga.SuccessRatioParameter.Hidden = true;
    165       osga.SelectedParentsParameter.Hidden = true;
    166       osga.ElitesParameter.Hidden = true;
    167 
    168       #endregion
    169       return osga;
     82      Stopwatch watch = new Stopwatch();
     83      for (int rep = 0; rep < repetitions; rep++) {
     84        watch.Start();
     85        for (int i = 0; i < trees.Length; i++) {
     86          double quality = SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(
     87            interpreter, trees[i], problemData, rows, true, maxIterations);
     88        }
     89        watch.Stop();
     90        Console.WriteLine("Iteration " + rep + "\t\t" + " Elapsed time: \t" + watch.ElapsedMilliseconds + " ms \t\t" +
     91          "Time per tree: " + watch.ElapsedMilliseconds / 1000.0 / trees.Length);
     92        watch.Reset();
     93      }
    17094    }
    17195
    17296
    173     public static void ConfigureOsGeneticAlgorithmParameters<S, C, M>(OffspringSelectionGeneticAlgorithm ga, int popSize, int elites, int maxGens, double mutationRate = 0.05, double maxSelPres = 100, int tournGroupSize = 0)
    174       where S : ISelector
    175       where C : ICrossover
    176       where M : IManipulator {
    177       ga.Elites.Value = elites;
    178       ga.MaximumGenerations.Value = maxGens;
    179       ga.MutationProbability.Value = mutationRate;
    180       ga.PopulationSize.Value = popSize;
    181       ga.MaximumSelectionPressure.Value = maxSelPres;
    182       ga.Seed.Value = 0;
    183       ga.SetSeedRandomly.Value = true;
    184       ga.ComparisonFactorLowerBound.Value = 1;
    185       ga.ComparisonFactorUpperBound.Value = 1;
    18697
    187       ga.Selector = ga.SelectorParameter.ValidValues
    188         .OfType<S>()
    189         .First();
     98    public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, IDataset dataset, ISymbolicExpressionGrammar grammar, int popSize) {
     99      return CreateRandomTrees(twister, dataset, grammar, popSize, 1, 200, 3, 3);
     100    }
    190101
    191       ga.Crossover = ga.CrossoverParameter.ValidValues
    192         .OfType<C>()
    193         .First();
     102    public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, IDataset dataset, ISymbolicExpressionGrammar grammar,
     103      int popSize, int minSize, int maxSize,
     104      int maxFunctionDefinitions, int maxFunctionArguments) {
     105      foreach (Variable variableSymbol in grammar.Symbols.OfType<Variable>()) {
     106        variableSymbol.VariableNames = dataset.VariableNames;
     107      }
     108      ISymbolicExpressionTree[] randomTrees = new ISymbolicExpressionTree[popSize];
     109      for (int i = 0; i < randomTrees.Length; i++) {
     110        randomTrees[i] = ProbabilisticTreeCreator.Create(twister, grammar, maxSize, 10);
     111      }
     112      return randomTrees;
     113    }
    194114
    195       ga.Mutator = ga.MutatorParameter.ValidValues
    196         .OfType<M>()
    197         .First();
    198 
    199       var tSelector = ga.Selector as TournamentSelector;
    200       if (tSelector != null) {
    201         tSelector.GroupSizeParameter.Value.Value = tournGroupSize;
     115    public static void InitTree(ISymbolicExpressionTree tree, MersenneTwister twister, List<string> varNames) {
     116      foreach (var node in tree.IterateNodesPostfix()) {
     117        if (node is VariableTreeNode) {
     118          var varNode = node as VariableTreeNode;
     119          varNode.Weight = twister.NextDouble() * 20.0 - 10.0;
     120          varNode.VariableName = varNames[twister.Next(varNames.Count)];
     121        } else if (node is ConstantTreeNode) {
     122          var constantNode = node as ConstantTreeNode;
     123          constantNode.Value = twister.NextDouble() * 20.0 - 10.0;
     124        }
    202125      }
    203       ga.Engine = new ParallelEngine();
    204126    }
    205127
Note: See TracChangeset for help on using the changeset viewer.