Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2974_Constants_Optimization/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/ConstantsOptimizationEvaluator.cs @ 16464

Last change on this file since 16464 was 16464, checked in by mkommend, 5 years ago

#2974: Adapted new constants optimizer.

File size: 17.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using static HeuristicLab.Problems.DataAnalysis.Symbolic.TreeToAutoDiffTermConverter;
33
34namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
35  [Item("New Constant Optimization Evaluator", "Calculates Pearson MSE of a symbolic regression solution and optimizes the constant used.")]
36  [StorableClass]
37  public class ConstantsOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
38    private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
39    private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
40    private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
41    private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
42    private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
43    private const string UpdateVariableWeightsParameterName = "Update Variable Weights";
44
45    private const string FunctionEvaluationsResultParameterName = "Constants Optimization Function Evaluations";
46    private const string GradientEvaluationsResultParameterName = "Constants Optimization Gradient Evaluations";
47    private const string CountEvaluationsParameterName = "Count Function and Gradient Evaluations";
48
49    public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
50      get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
51    }
52    public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
53      get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
54    }
55    public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
56      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
57    }
58    public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
59      get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
60    }
61    public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
62      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
63    }
64    public IFixedValueParameter<BoolValue> UpdateVariableWeightsParameter {
65      get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateVariableWeightsParameterName]; }
66    }
67
68    public IResultParameter<IntValue> FunctionEvaluationsResultParameter {
69      get { return (IResultParameter<IntValue>)Parameters[FunctionEvaluationsResultParameterName]; }
70    }
71    public IResultParameter<IntValue> GradientEvaluationsResultParameter {
72      get { return (IResultParameter<IntValue>)Parameters[GradientEvaluationsResultParameterName]; }
73    }
74    public IFixedValueParameter<BoolValue> CountEvaluationsParameter {
75      get { return (IFixedValueParameter<BoolValue>)Parameters[CountEvaluationsParameterName]; }
76    }
77
78
79    public IntValue ConstantOptimizationIterations {
80      get { return ConstantOptimizationIterationsParameter.Value; }
81    }
82    public DoubleValue ConstantOptimizationImprovement {
83      get { return ConstantOptimizationImprovementParameter.Value; }
84    }
85    public PercentValue ConstantOptimizationProbability {
86      get { return ConstantOptimizationProbabilityParameter.Value; }
87    }
88    public PercentValue ConstantOptimizationRowsPercentage {
89      get { return ConstantOptimizationRowsPercentageParameter.Value; }
90    }
91    public bool UpdateConstantsInTree {
92      get { return UpdateConstantsInTreeParameter.Value.Value; }
93      set { UpdateConstantsInTreeParameter.Value.Value = value; }
94    }
95
96    public bool UpdateVariableWeights {
97      get { return UpdateVariableWeightsParameter.Value.Value; }
98      set { UpdateVariableWeightsParameter.Value.Value = value; }
99    }
100
101    public bool CountEvaluations {
102      get { return CountEvaluationsParameter.Value.Value; }
103      set { CountEvaluationsParameter.Value.Value = value; }
104    }
105
106    public override bool Maximization {
107      get { return true; }
108    }
109
110    [StorableConstructor]
111    protected ConstantsOptimizationEvaluator(bool deserializing) : base(deserializing) { }
112    protected ConstantsOptimizationEvaluator(ConstantsOptimizationEvaluator original, Cloner cloner)
113      : base(original, cloner) {
114    }
115    public ConstantsOptimizationEvaluator()
116      : base() {
117      Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true));
118      Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) { Hidden = true });
119      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
120      Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
121      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true });
122      Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be  optimized.", new BoolValue(true)) { Hidden = true });
123
124      Parameters.Add(new FixedValueParameter<BoolValue>(CountEvaluationsParameterName, "Determines if function and gradient evaluation should be counted.", new BoolValue(false)));
125      Parameters.Add(new ResultParameter<IntValue>(FunctionEvaluationsResultParameterName, "The number of function evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
126      Parameters.Add(new ResultParameter<IntValue>(GradientEvaluationsResultParameterName, "The number of gradient evaluations performed by the constants optimization evaluator", "Results", new IntValue()));
127    }
128
129    public override IDeepCloneable Clone(Cloner cloner) {
130      return new ConstantsOptimizationEvaluator(this, cloner);
131    }
132
133    private static readonly object locker = new object();
134    public override IOperation InstrumentedApply() {
135      var solution = SymbolicExpressionTreeParameter.ActualValue;
136      double quality;
137      if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
138        IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
139        var counter = new EvaluationsCounter();
140        quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
141           constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value, updateVariableWeights: UpdateVariableWeights, lowerEstimationLimit: EstimationLimitsParameter.ActualValue.Lower, upperEstimationLimit: EstimationLimitsParameter.ActualValue.Upper, updateConstantsInTree: UpdateConstantsInTree, counter: counter);
142
143        if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
144          var evaluationRows = GenerateRowsToEvaluate();
145          quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
146        }
147
148        if (CountEvaluations) {
149          lock (locker) {
150            FunctionEvaluationsResultParameter.ActualValue.Value += counter.FunctionEvaluations;
151            GradientEvaluationsResultParameter.ActualValue.Value += counter.GradientEvaluations;
152          }
153        }
154
155      } else {
156        var evaluationRows = GenerateRowsToEvaluate();
157        quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
158      }
159      QualityParameter.ActualValue = new DoubleValue(quality);
160
161      return base.InstrumentedApply();
162    }
163
164    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
165      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
166      EstimationLimitsParameter.ExecutionContext = context;
167      ApplyLinearScalingParameter.ExecutionContext = context;
168      FunctionEvaluationsResultParameter.ExecutionContext = context;
169      GradientEvaluationsResultParameter.ExecutionContext = context;
170
171      // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
172      // because Evaluate() is used to get the quality of evolved models on
173      // different partitions of the dataset (e.g., best validation model)
174      double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
175
176      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
177      EstimationLimitsParameter.ExecutionContext = null;
178      ApplyLinearScalingParameter.ExecutionContext = null;
179      FunctionEvaluationsResultParameter.ExecutionContext = null;
180      GradientEvaluationsResultParameter.ExecutionContext = null;
181
182      return r2;
183    }
184
185    public class EvaluationsCounter {
186      public int FunctionEvaluations = 0;
187      public int GradientEvaluations = 0;
188    }
189
190    [ThreadStatic]
191    private static double[,] x = null;
192    [ThreadStatic]
193    private static IDataset ds = null;
194    [ThreadStatic]
195    private static Dictionary<DataForVariable, AutoDiff.Variable> parameters;
196
197    public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
198      ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling,
199      int maxIterations, bool updateVariableWeights = true,
200      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
201      bool updateConstantsInTree = true, Action<double[], double, object> iterationCallback = null, EvaluationsCounter counter = null) {
202
203      if (ds == null || ds != problemData.Dataset) {
204        ds = problemData.Dataset;
205        parameters = ConstantsOptimization.Util.ExtractParameters(problemData.Dataset);
206        x = ConstantsOptimization.Util.ExtractData(ds, parameters.Keys, rows);
207       
208      }
209      double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
210
211
212      // numeric constants in the tree become variables for constant opt
213      // variables in the tree become parameters (fixed values) for constant opt
214      // for each parameter (variable in the original tree) we store the
215      // variable name, variable value (for factor vars) and lag as a DataForVariable object.
216      // A dictionary is used to find parameters
217      TreeToAutoDiffTermConverter.ParametricFunction func;
218      TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad;
219      double[] initialConstants;
220
221      if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, parameters, out func, out func_grad, out initialConstants))
222        throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
223      if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a R² of 0.0
224
225      //extract inital constants
226      double[] c;
227      if (applyLinearScaling) {
228        c = new double[initialConstants.Length + 2];
229        c[0] = 0.0;
230        c[1] = 1.0;
231        Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
232      } else {
233        c = (double[])initialConstants.Clone();
234      }
235
236      double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
237
238      if (counter == null) counter = new EvaluationsCounter();
239      var rowEvaluationsCounter = new EvaluationsCounter();
240
241      alglib.lsfitstate state;
242      alglib.lsfitreport rep;
243      int retVal;
244
245
246      int n = x.GetLength(0);
247      int m = x.GetLength(1);
248      int k = c.Length;
249
250      alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(func);
251      alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(func_grad);
252      alglib.ndimensional_rep xrep = (p, f, obj) => iterationCallback(p, f, obj);
253
254      try {
255        alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
256        alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
257        alglib.lsfitsetxrep(state, iterationCallback != null);
258        //alglib.lsfitsetgradientcheck(state, 0.001);
259        alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, xrep, rowEvaluationsCounter);
260        alglib.lsfitresults(state, out retVal, out c, out rep);
261      } catch (ArithmeticException) {
262        return originalQuality;
263      } catch (alglib.alglibexception) {
264        return originalQuality;
265      }
266
267      counter.FunctionEvaluations += rowEvaluationsCounter.FunctionEvaluations / n;
268      counter.GradientEvaluations += rowEvaluationsCounter.GradientEvaluations / n;
269
270      //retVal == -7  => constant optimization failed due to wrong gradient
271      if (retVal != -7) {
272        if (applyLinearScaling) {
273          var tmp = new double[c.Length - 2];
274          Array.Copy(c, 2, tmp, 0, tmp.Length);
275          ConstantsOptimization.Util.UpdateConstants(tree, tmp);
276        } else ConstantsOptimization.Util.UpdateConstants(tree, c);
277      }
278      var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
279
280      if (!updateConstantsInTree)
281        ConstantsOptimization.Util.UpdateConstants(tree, initialConstants);
282
283      if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
284        ConstantsOptimization.Util.UpdateConstants(tree, initialConstants);
285        return originalQuality;
286      }
287      return quality;
288    }
289
290    private static alglib.ndimensional_pfunc CreatePFunc(TreeToAutoDiffTermConverter.ParametricFunction func) {
291      return (double[] c, double[] x, ref double fx, object o) => {
292        fx = func(c, x);
293        var counter = (EvaluationsCounter)o;
294        counter.FunctionEvaluations++;
295      };
296    }
297
298    private static alglib.ndimensional_pgrad CreatePGrad(TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad) {
299      return (double[] c, double[] x, ref double fx, double[] grad, object o) => {
300        var tuple = func_grad(c, x);
301        fx = tuple.Item2;
302        Array.Copy(tuple.Item1, grad, grad.Length);
303        var counter = (EvaluationsCounter)o;
304        counter.GradientEvaluations++;
305      };
306    }
307    public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
308      return TreeToAutoDiffTermConverter.IsCompatible(tree);
309    }
310  }
311}
Note: See TracBrowser for help on using the repository browser.