Changeset 16386 for branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic
- Timestamp:
- 12/15/18 12:07:16 (6 years ago)
- Location:
- branches/2925_AutoDiffForDynamicalModels
- Files:
-
- 19 edited
- 13 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/2925_AutoDiffForDynamicalModels
- Property svn:mergeinfo changed
-
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic
- Property svn:mergeinfo changed
-
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/LinearModelToTreeConverter.cs
r15583 r16386 37 37 string[] variableNames, double[] coefficients, 38 38 double @const = 0) { 39 39 40 if (factorCoefficients.Length == 0 && coefficients.Length == 0) throw new ArgumentException(); 40 ISymbolicExpressionTree p1 = null; 41 42 // Create tree for double variables 43 ISymbolicExpressionTree tree = null; 41 44 if (coefficients.Length > 0) { 42 p1 = CreateTree(variableNames, new int[variableNames.Length], coefficients, @const); 43 if (factorCoefficients.Length == 0) 44 return p1; 45 tree = CreateTree(variableNames, new int[variableNames.Length], coefficients, @const); 46 if (factorCoefficients.Length == 0) return tree; 45 47 } 48 49 // Create tree for string variables 50 ISymbolicExpressionTree factorTree = null; 46 51 if (factorCoefficients.Length > 0) { 47 var p2 = CreateTree(factors, factorCoefficients); 48 if (p1 == null) return p2; 52 factorTree = CreateTree(factors, factorCoefficients, @const); 53 if (tree == null) return factorTree; 54 } 49 55 50 // combine51 ISymbolicExpressionTreeNode add = p1.Root.GetSubtree(0).GetSubtree(0);52 foreach (var binFactorNode in p2.IterateNodesPrefix().OfType<BinaryFactorVariableTreeNode>())53 add.AddSubtree(binFactorNode);54 return p1;55 } 56 // Combine both trees 57 ISymbolicExpressionTreeNode add = tree.Root.GetSubtree(0).GetSubtree(0); 58 foreach (var binFactorNode in factorTree.IterateNodesPrefix().OfType<BinaryFactorVariableTreeNode>()) 59 add.InsertSubtree(add.SubtreeCount - 1, binFactorNode); 60 return tree; 61 56 62 throw new ArgumentException(); 57 63 } -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeSimplifier.cs
r15583 r16386 37 37 private static readonly Division divSymbol = new Division(); 38 38 private static readonly Constant constSymbol = new Constant(); 39 private static readonly Absolute absSymbol = new Absolute(); 39 40 private static readonly Logarithm logSymbol = new Logarithm(); 40 41 private static readonly Exponential expSymbol = new Exponential(); … … 42 43 private static readonly Square sqrSymbol = new Square(); 43 44 private static readonly SquareRoot sqrtSymbol = new SquareRoot(); 45 private static readonly AnalyticQuotient aqSymbol = new AnalyticQuotient(); 46 private static readonly Cube cubeSymbol = new Cube(); 47 private static readonly CubeRoot cubeRootSymbol = new CubeRoot(); 44 48 private static readonly Power powSymbol = new Power(); 45 49 private static readonly Sine sineSymbol = new Sine(); … … 131 135 } 132 136 137 private static bool IsAbsolute(ISymbolicExpressionTreeNode node) { 138 return node.Symbol is Absolute; 139 } 140 133 141 // exponential 134 142 private static bool IsLog(ISymbolicExpressionTreeNode node) { … … 152 160 } 153 161 162 private static bool IsCube(ISymbolicExpressionTreeNode node) { 163 return node.Symbol is Cube; 164 } 165 166 private static bool IsCubeRoot(ISymbolicExpressionTreeNode node) { 167 return node.Symbol is CubeRoot; 168 } 169 154 170 private static bool IsPower(ISymbolicExpressionTreeNode node) { 155 171 return node.Symbol is Power; … … 167 183 private static bool IsTangent(ISymbolicExpressionTreeNode node) { 168 184 return node.Symbol is Tangent; 185 } 186 187 private static bool IsAnalyticalQuotient(ISymbolicExpressionTreeNode node) { 188 return node.Symbol is AnalyticQuotient; 169 189 } 170 190 … … 243 263 if (IsConstant(original) || IsVariableBase(original)) { 244 264 return (ISymbolicExpressionTreeNode)original.Clone(); 265 } else if (IsAbsolute(original)) { 266 return SimplifyAbsolute(original); 245 267 } else if (IsAddition(original)) { 246 268 return SimplifyAddition(original); … … 261 283 } else if (IsSquareRoot(original)) { 262 284 return SimplifySquareRoot(original); 285 } else if (IsCube(original)) { 286 return SimplifyCube(original); 287 } else if (IsCubeRoot(original)) { 288 return SimplifyCubeRoot(original); 263 289 } else if (IsPower(original)) { 264 290 return SimplifyPower(original); … … 271 297 } else if (IsTangent(original)) { 272 298 return SimplifyTangent(original); 299 } else if (IsAnalyticalQuotient(original)) { 300 return SimplifyAnalyticalQuotient(original); 273 301 } else if (IsIfThenElse(original)) { 274 302 return SimplifyIfThenElse(original); … … 380 408 } 381 409 410 private static ISymbolicExpressionTreeNode SimplifyAbsolute(ISymbolicExpressionTreeNode original) { 411 return MakeAbs(GetSimplifiedTree(original.GetSubtree(0))); 412 } 413 382 414 private static ISymbolicExpressionTreeNode SimplifyNot(ISymbolicExpressionTreeNode original) { 383 415 return MakeNot(GetSimplifiedTree(original.GetSubtree(0))); … … 432 464 return MakeSquareRoot(GetSimplifiedTree(original.GetSubtree(0))); 433 465 } 466 private static ISymbolicExpressionTreeNode SimplifyCube(ISymbolicExpressionTreeNode original) { 467 return MakeCube(GetSimplifiedTree(original.GetSubtree(0))); 468 } 469 470 private static ISymbolicExpressionTreeNode SimplifyCubeRoot(ISymbolicExpressionTreeNode original) { 471 return MakeCubeRoot(GetSimplifiedTree(original.GetSubtree(0))); 472 } 434 473 435 474 private static ISymbolicExpressionTreeNode SimplifyLog(ISymbolicExpressionTreeNode original) { … … 443 482 private static ISymbolicExpressionTreeNode SimplifyPower(ISymbolicExpressionTreeNode original) { 444 483 return MakePower(GetSimplifiedTree(original.GetSubtree(0)), GetSimplifiedTree(original.GetSubtree(1))); 484 } 485 486 private static ISymbolicExpressionTreeNode SimplifyAnalyticalQuotient(ISymbolicExpressionTreeNode original) { 487 return MakeAnalyticalQuotient(GetSimplifiedTree(original.GetSubtree(0)), GetSimplifiedTree(original.GetSubtree(1))); 445 488 } 446 489 … … 730 773 } else if (IsSquareRoot(node)) { 731 774 return node.GetSubtree(0); 775 } else if (IsMultiplication(node)) { 776 // sqr( x * y ) = sqr(x) * sqr(y) 777 var mulNode = mulSymbol.CreateTreeNode(); 778 foreach (var subtree in node.Subtrees) { 779 mulNode.AddSubtree(MakeSquare(subtree)); 780 } 781 return mulNode; 782 } else if (IsAbsolute(node)) { 783 return MakeSquare(node.GetSubtree(0)); // sqr(abs(x)) = sqr(x) 784 } else if (IsExp(node)) { 785 return MakeExp(MakeProduct(node.GetSubtree(0), MakeConstant(2.0))); // sqr(exp(x)) = exp(2x) 786 } else if (IsCube(node)) { 787 return MakePower(node.GetSubtree(0), MakeConstant(6)); 732 788 } else { 733 789 var sqrNode = sqrSymbol.CreateTreeNode(); 734 790 sqrNode.AddSubtree(node); 735 791 return sqrNode; 792 } 793 } 794 795 private static ISymbolicExpressionTreeNode MakeCube(ISymbolicExpressionTreeNode node) { 796 if (IsConstant(node)) { 797 var constT = node as ConstantTreeNode; 798 return MakeConstant(constT.Value * constT.Value * constT.Value); 799 } else if (IsFactor(node)) { 800 var factNode = node as FactorVariableTreeNode; 801 return MakeFactor(factNode.Symbol, factNode.VariableName, factNode.Weights.Select(w => w * w * w)); 802 } else if (IsBinFactor(node)) { 803 var binFactor = node as BinaryFactorVariableTreeNode; 804 return MakeBinFactor(binFactor.Symbol, binFactor.VariableName, binFactor.VariableValue, binFactor.Weight * binFactor.Weight * binFactor.Weight); 805 } else if (IsCubeRoot(node)) { 806 return node.GetSubtree(0); // NOTE: not really accurate because cuberoot(x) with negative x is evaluated to NaN and after this simplification we evaluate as x 807 } else if (IsExp(node)) { 808 return MakeExp(MakeProduct(node.GetSubtree(0), MakeConstant(3))); 809 } else if (IsSquare(node)) { 810 return MakePower(node.GetSubtree(0), MakeConstant(6)); 811 } else { 812 var cubeNode = cubeSymbol.CreateTreeNode(); 813 cubeNode.AddSubtree(node); 814 return cubeNode; 815 } 816 } 817 818 private static ISymbolicExpressionTreeNode MakeAbs(ISymbolicExpressionTreeNode node) { 819 if (IsConstant(node)) { 820 var constT = node as ConstantTreeNode; 821 return MakeConstant(Math.Abs(constT.Value)); 822 } else if (IsFactor(node)) { 823 var factNode = node as FactorVariableTreeNode; 824 return MakeFactor(factNode.Symbol, factNode.VariableName, factNode.Weights.Select(w => Math.Abs(w))); 825 } else if (IsBinFactor(node)) { 826 var binFactor = node as BinaryFactorVariableTreeNode; 827 return MakeBinFactor(binFactor.Symbol, binFactor.VariableName, binFactor.VariableValue, Math.Abs(binFactor.Weight)); 828 } else if (IsSquare(node) || IsExp(node) || IsSquareRoot(node) || IsCubeRoot(node)) { 829 return node; // abs(sqr(x)) = sqr(x), abs(exp(x)) = exp(x) ... 830 } else if (IsMultiplication(node)) { 831 var mul = mulSymbol.CreateTreeNode(); 832 foreach (var st in node.Subtrees) { 833 mul.AddSubtree(MakeAbs(st)); 834 } 835 return mul; 836 } else if (IsDivision(node)) { 837 var div = divSymbol.CreateTreeNode(); 838 foreach (var st in node.Subtrees) { 839 div.AddSubtree(MakeAbs(st)); 840 } 841 return div; 842 } else { 843 var absNode = absSymbol.CreateTreeNode(); 844 absNode.AddSubtree(node); 845 return absNode; 846 } 847 } 848 849 // constant folding only 850 private static ISymbolicExpressionTreeNode MakeAnalyticalQuotient(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) { 851 if (IsConstant(b)) { 852 var c = b as ConstantTreeNode; 853 return MakeFraction(a, MakeConstant(Math.Sqrt(1.0 + c.Value * c.Value))); 854 } else if (IsFactor(b)) { 855 var factNode = b as FactorVariableTreeNode; 856 return MakeFraction(a, MakeFactor(factNode.Symbol, factNode.VariableName, factNode.Weights.Select(w => Math.Sqrt(1.0 + w * w)))); 857 } else if (IsBinFactor(b)) { 858 var binFactor = b as BinaryFactorVariableTreeNode; 859 return MakeFraction(a, MakeBinFactor(binFactor.Symbol, binFactor.VariableName, binFactor.VariableValue, Math.Sqrt(1.0 + binFactor.Weight * binFactor.Weight))); 860 } else { 861 var aqNode = aqSymbol.CreateTreeNode(); 862 aqNode.AddSubtree(a); 863 aqNode.AddSubtree(b); 864 return aqNode; 736 865 } 737 866 } … … 748 877 return MakeBinFactor(binFactor.Symbol, binFactor.VariableName, binFactor.VariableValue, Math.Sqrt(binFactor.Weight)); 749 878 } else if (IsSquare(node)) { 750 return node.GetSubtree(0); 879 return node.GetSubtree(0); // NOTE: not really accurate because sqrt(x) with negative x is evaluated to NaN and after this simplification we evaluate as x 751 880 } else { 752 881 var sqrtNode = sqrtSymbol.CreateTreeNode(); 753 882 sqrtNode.AddSubtree(node); 754 883 return sqrtNode; 884 } 885 } 886 887 private static ISymbolicExpressionTreeNode MakeCubeRoot(ISymbolicExpressionTreeNode node) { 888 if (IsConstant(node)) { 889 var constT = node as ConstantTreeNode; 890 return MakeConstant(Math.Pow(constT.Value, 1.0 / 3.0)); 891 } else if (IsFactor(node)) { 892 var factNode = node as FactorVariableTreeNode; 893 return MakeFactor(factNode.Symbol, factNode.VariableName, factNode.Weights.Select(w => Math.Pow(w, 1.0 / 3.0))); 894 } else if (IsBinFactor(node)) { 895 var binFactor = node as BinaryFactorVariableTreeNode; 896 return MakeBinFactor(binFactor.Symbol, binFactor.VariableName, binFactor.VariableValue, Math.Sqrt(Math.Pow(binFactor.Weight, 1.0 / 3.0))); 897 } else if (IsCube(node)) { 898 return node.GetSubtree(0); 899 } else { 900 var cubeRootNode = cubeRootSymbol.CreateTreeNode(); 901 cubeRootNode.AddSubtree(node); 902 return cubeRootNode; 755 903 } 756 904 } … … 927 1075 // a / (b1 / b2) => (a * b2) / b1 928 1076 return MakeFraction(MakeProduct(a, b.GetSubtree(1)), b.GetSubtree(0)); 1077 } else if (IsAnalyticalQuotient(a)) { 1078 return MakeAnalyticalQuotient(a.GetSubtree(0), MakeProduct(a.GetSubtree(1), b)); 929 1079 } else { 930 1080 var div = divSymbol.CreateTreeNode(); … … 1121 1271 // $ * 1.0 => $ 1122 1272 return a; 1273 } else if (IsConstant(b) && ((ConstantTreeNode)b).Value.IsAlmost(0.0)) { 1274 return MakeConstant(0); 1123 1275 } else if (IsConstant(b) && IsVariableBase(a)) { 1124 1276 // multiply constants into variables weights … … 1153 1305 MergeVariablesAndConstantsInProduct(a); 1154 1306 return a; 1307 } else if (IsAbsolute(a) && IsAbsolute(b)) { 1308 return MakeAbs(MakeProduct(a.GetSubtree(0), b.GetSubtree(0))); 1309 } else if (IsAbsolute(a) && IsConstant(b)) { 1310 var constNode = b as ConstantTreeNode; 1311 var posF = Math.Abs(constNode.Value); 1312 if (constNode.Value > 0) { 1313 return MakeAbs(MakeProduct(a.GetSubtree(0), MakeConstant(posF))); 1314 } else { 1315 var mul = mulSymbol.CreateTreeNode(); 1316 mul.AddSubtree(MakeAbs(MakeProduct(a.GetSubtree(0), MakeConstant(posF)))); 1317 mul.AddSubtree(MakeConstant(-1.0)); 1318 return mul; 1319 } 1320 } else if (IsAnalyticalQuotient(a)) { 1321 return MakeAnalyticalQuotient(MakeProduct(a.GetSubtree(0), b), a.GetSubtree(1)); 1155 1322 } else { 1156 1323 var mul = mulSymbol.CreateTreeNode(); -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeToAutoDiffTermConverter.cs
r15583 r16386 85 85 diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI)); 86 86 87 private static readonly Func<Term, UnaryFunc> abs = UnaryFunc.Factory( 88 eval: Math.Abs, 89 diff: x => Math.Sign(x) 90 ); 91 87 92 #endregion 88 93 … … 213 218 else return terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b)); 214 219 } 220 if (node.Symbol is Absolute) { 221 var x1 = ConvertToAutoDiff(node.GetSubtree(0)); 222 return abs(x1); 223 } 224 if (node.Symbol is AnalyticQuotient) { 225 var x1 = ConvertToAutoDiff(node.GetSubtree(0)); 226 var x2 = ConvertToAutoDiff(node.GetSubtree(1)); 227 return x1 / (TermBuilder.Power(1 + x2 * x2, 0.5)); 228 } 215 229 if (node.Symbol is Logarithm) { 216 230 return AutoDiff.TermBuilder.Log( … … 228 242 return AutoDiff.TermBuilder.Power( 229 243 ConvertToAutoDiff(node.GetSubtree(0)), 0.5); 244 } 245 if (node.Symbol is Cube) { 246 return AutoDiff.TermBuilder.Power( 247 ConvertToAutoDiff(node.GetSubtree(0)), 3.0); 248 } 249 if (node.Symbol is CubeRoot) { 250 return AutoDiff.TermBuilder.Power( 251 ConvertToAutoDiff(node.GetSubtree(0)), 1.0/3.0); 230 252 } 231 253 if (node.Symbol is Sine) { … … 301 323 !(n.Symbol is Erf) && 302 324 !(n.Symbol is Norm) && 303 !(n.Symbol is StartSymbol) 325 !(n.Symbol is StartSymbol) && 326 !(n.Symbol is Absolute) && 327 !(n.Symbol is AnalyticQuotient) && 328 !(n.Symbol is Cube) && 329 !(n.Symbol is CubeRoot) 304 330 select n).Any(); 305 331 return !containsUnknownSymbol; -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Formatters/InfixExpressionFormatter.cs
r15583 r16386 62 62 if (node.SubtreeCount > 1) { 63 63 var token = GetToken(node.Symbol); 64 if (token == "+" || token == "-" || token == "OR" || token == "XOR") { 65 strBuilder.Append("("); 66 FormatRecursively(node.Subtrees.First(), strBuilder); 67 68 foreach (var subtree in node.Subtrees.Skip(1)) { 69 strBuilder.Append(" ").Append(token).Append(" "); 70 FormatRecursively(subtree, strBuilder); 71 } 72 strBuilder.Append(")"); 73 74 } else if (token == "*" || token == "/" || token == "AND") { 64 // operators 65 if (token == "+" || token == "-" || token == "OR" || token == "XOR" || 66 token == "*" || token == "/" || token == "AND" || 67 token == "^") { 75 68 strBuilder.Append("("); 76 69 FormatRecursively(node.Subtrees.First(), strBuilder); … … 184 177 185 178 private string GetToken(ISymbol symbol) { 186 var tok = InfixExpressionParser.knownSymbols.GetBySecond(symbol). SingleOrDefault();179 var tok = InfixExpressionParser.knownSymbols.GetBySecond(symbol).FirstOrDefault(); 187 180 if (tok == null) 188 181 throw new ArgumentException(string.Format("Unknown symbol {0} found.", symbol.Name)); -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Grammars/FullFunctionalExpressionGrammar.cs
r15583 r16386 48 48 var mul = new Multiplication(); 49 49 var div = new Division(); 50 var aq = new AnalyticQuotient(); 50 51 var mean = new Average(); 51 52 var sin = new Sine(); … … 53 54 var tan = new Tangent(); 54 55 var log = new Logarithm(); 56 var abs = new Absolute(); 55 57 var pow = new Power(); 56 58 pow.InitialFrequency = 0.0; 57 59 var square = new Square(); 58 60 square.InitialFrequency = 0.0; 61 var cube = new Cube(); 62 cube.InitialFrequency = 0.0; 59 63 var root = new Root(); 60 64 root.InitialFrequency = 0.0; 61 65 var sqrt = new SquareRoot(); 62 66 sqrt.InitialFrequency = 0.0; 67 var cubeRoot = new CubeRoot(); 68 cubeRoot.InitialFrequency = 0.0; 63 69 var airyA = new AiryA(); 64 70 airyA.InitialFrequency = 0.0; … … 123 129 autoregressiveVariable.Enabled = false; 124 130 125 var allSymbols = new List<Symbol>() { add, sub, mul, div, mean, sin, cos, tan, log, square, pow, sqrt, root, exp,131 var allSymbols = new List<Symbol>() { add, sub, mul, div, aq, mean, abs, sin, cos, tan, log, square, cube, pow, sqrt, cubeRoot, root, exp, 126 132 airyA, airyB, bessel, cosineIntegral, dawson, erf, expIntegralEi, fresnelCosineIntegral, fresnelSineIntegral, gamma, hypCosineIntegral, hypSineIntegral, norm, psi, sineIntegral, 127 133 @if, gt, lt, and, or, not,xor, timeLag, integral, derivative, constant, variableSymbol, binFactorVariable, factorVariable, laggedVariable,autoregressiveVariable, variableCondition }; 128 var unaryFunctionSymbols = new List<Symbol>() { square, sqrt, sin, cos, tan, log, exp, not, timeLag, integral, derivative,134 var unaryFunctionSymbols = new List<Symbol>() { abs, square, sqrt, cube, cubeRoot, sin, cos, tan, log, exp, not, timeLag, integral, derivative, 129 135 airyA, airyB, bessel, cosineIntegral, dawson, erf, expIntegralEi, fresnelCosineIntegral, fresnelSineIntegral, gamma, hypCosineIntegral, hypSineIntegral, norm, psi, sineIntegral 130 136 }; 131 137 132 var binaryFunctionSymbols = new List<Symbol>() { pow, root, gt, lt, variableCondition };138 var binaryFunctionSymbols = new List<Symbol>() { pow, root, gt, lt, aq, variableCondition }; 133 139 var ternarySymbols = new List<Symbol>() { add, sub, mul, div, mean, and, or, xor }; 134 140 var terminalSymbols = new List<Symbol>() { variableSymbol, binFactorVariable, factorVariable, constant, laggedVariable, autoregressiveVariable }; -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Grammars/TypeCoherentExpressionGrammar.cs
r15583 r16386 69 69 var root = new Root(); 70 70 var sqrt = new SquareRoot(); 71 var cube = new Cube(); 72 var cubeRoot = new CubeRoot(); 71 73 var exp = new Exponential(); 74 var abs = new Absolute(); 72 75 73 76 var airyA = new AiryA(); … … 86 89 var psi = new Psi(); 87 90 var sineIntegral = new SineIntegral(); 91 var analyticalQuotient = new AnalyticQuotient(); 88 92 89 93 var @if = new IfThenElse(); … … 114 118 var trigonometricSymbols = new GroupSymbol(TrigonometricFunctionsName, new List<ISymbol>() { sin, cos, tan }); 115 119 var exponentialAndLogarithmicSymbols = new GroupSymbol(ExponentialFunctionsName, new List<ISymbol> { exp, log }); 116 var specialFunctions = new GroupSymbol(SpecialFunctionsName, new List<ISymbol> { a iryA, airyB, bessel, cosineIntegral, dawson, erf, expIntegralEi,117 fresnelCosineIntegral,fresnelSineIntegral,gamma,hypCosineIntegral,hypSineIntegral,norm, psi, sineIntegral });120 var specialFunctions = new GroupSymbol(SpecialFunctionsName, new List<ISymbol> { abs, airyA, airyB, bessel, cosineIntegral, dawson, erf, expIntegralEi, 121 fresnelCosineIntegral,fresnelSineIntegral,gamma,hypCosineIntegral,hypSineIntegral,norm, psi, sineIntegral, analyticalQuotient}); 118 122 var terminalSymbols = new GroupSymbol(TerminalsName, new List<ISymbol> { constant, variableSymbol, binFactorVariable, factorVariable }); 119 123 var realValuedSymbols = new GroupSymbol(RealValuedSymbolsName, new List<ISymbol>() { arithmeticSymbols, trigonometricSymbols, exponentialAndLogarithmicSymbols, specialFunctions, terminalSymbols }); 120 124 121 var powerSymbols = new GroupSymbol(PowerFunctionsName, new List<ISymbol> { square, pow, sqrt, root });125 var powerSymbols = new GroupSymbol(PowerFunctionsName, new List<ISymbol> { square, pow, sqrt, root, cube, cubeRoot }); 122 126 123 127 var conditionSymbols = new GroupSymbol(ConditionsName, new List<ISymbol> { @if, variableCondition }); … … 140 144 SetSubtreeCount(root, 2, 2); 141 145 SetSubtreeCount(square, 1, 1); 146 SetSubtreeCount(cube, 1, 1); 142 147 SetSubtreeCount(sqrt, 1, 1); 148 SetSubtreeCount(cubeRoot, 1, 1); 143 149 SetSubtreeCount(exponentialAndLogarithmicSymbols, 1, 1); 144 SetSubtreeCount(specialFunctions, 1, 1); 150 foreach(var sy in specialFunctions.Symbols.Except(new[] { analyticalQuotient})) { 151 SetSubtreeCount(sy, 1, 1); 152 } 153 SetSubtreeCount(analyticalQuotient, 2, 2); 154 145 155 SetSubtreeCount(terminalSymbols, 0, 0); 146 156 … … 231 241 public void ConfigureAsDefaultRegressionGrammar() { 232 242 Symbols.First(s => s is Average).Enabled = false; 243 Symbols.First(s => s is Absolute).Enabled = false; 233 244 Symbols.First(s => s.Name == TrigonometricFunctionsName).Enabled = false; 234 245 Symbols.First(s => s.Name == PowerFunctionsName).Enabled = false; … … 242 253 Symbols.First(s => s is VariableCondition).Enabled = false; 243 254 Symbols.First(s => s is Xor).Enabled = false; 255 Symbols.First(s => s is Absolute).Enabled = false; 244 256 Symbols.First(s => s.Name == TrigonometricFunctionsName).Enabled = false; 245 257 Symbols.First(s => s.Name == ExponentialFunctionsName).Enabled = false; … … 251 263 public void ConfigureAsDefaultTimeSeriesPrognosisGrammar() { 252 264 Symbols.First(s => s is Average).Enabled = false; 265 Symbols.First(s => s is Absolute).Enabled = false; 253 266 Symbols.First(s => s.Name == TrigonometricFunctionsName).Enabled = false; 254 267 Symbols.First(s => s.Name == PowerFunctionsName).Enabled = false; -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r15902 r16386 107 107 <Private>False</Private> 108 108 </Reference> 109 <Reference Include="HeuristicLab.Problems.DataAnalysis.Symbolic.NativeInterpreter-0.1, Version=0.0.0.1, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 110 <SpecificVersion>False</SpecificVersion> 111 <HintPath>..\..\bin\HeuristicLab.Problems.DataAnalysis.Symbolic.NativeInterpreter-0.1.dll</HintPath> 112 <Private>False</Private> 113 </Reference> 109 114 <Reference Include="System" /> 110 115 <Reference Include="System.Core"> … … 123 128 <ItemGroup> 124 129 <Compile Include="Analyzers\SymbolicDataAnalysisBottomUpDiversityAnalyzer.cs" /> 130 <Compile Include="Analyzers\SymbolicDataAnalysisBuildingBlockAnalyzer.cs" /> 125 131 <Compile Include="Analyzers\SymbolicDataAnalysisSingleObjectivePruningAnalyzer.cs" /> 126 132 <Compile Include="Analyzers\SymbolicDataAnalysisSingleObjectiveValidationParetoBestSolutionAnalyzer.cs" /> … … 139 145 <Compile Include="Converters\LinearModelToTreeConverter.cs" /> 140 146 <Compile Include="Converters\TreeSimplifier.cs" /> 147 <Compile Include="Converters\DerivativeCalculator.cs" /> 141 148 <Compile Include="Converters\TreeToAutoDiffTermConverter.cs" /> 149 <Compile Include="Crossovers\SymbolicDataAnalysisExpressionDiversityPreservingCrossover.cs" /> 142 150 <Compile Include="Formatters\InfixExpressionFormatter.cs" /> 143 151 <Compile Include="Formatters\TSQLExpressionFormatter.cs" /> 144 152 <Compile Include="Formatters\SymbolicDataAnalysisExpressionMathematicaFormatter.cs" /> 145 153 <Compile Include="Formatters\SymbolicDataAnalysisExpressionCSharpFormatter.cs" /> 154 <Compile Include="Hashing\HashExtensions.cs" /> 155 <Compile Include="Hashing\HashUtil.cs" /> 156 <Compile Include="Hashing\SymbolicExpressionTreeHash.cs" /> 146 157 <Compile Include="Importer\InfixExpressionParser.cs" /> 147 158 <Compile Include="Importer\SymbolicExpressionImporter.cs" /> … … 150 161 <Compile Include="Interfaces\IVariableTreeNode.cs" /> 151 162 <Compile Include="Interfaces\IVariableSymbol.cs" /> 163 <Compile Include="Interpreter\BatchInstruction.cs" /> 164 <Compile Include="Interpreter\BatchOperations.cs" /> 152 165 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionCompiledTreeInterpreter.cs" /> 166 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeBatchInterpreter.cs" /> 167 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeNativeInterpreter.cs" /> 153 168 <Compile Include="SymbolicDataAnalysisExpressionTreeSimplificationOperator.cs" /> 154 169 <Compile Include="SymbolicDataAnalysisModelComplexityCalculator.cs" /> … … 198 213 <Compile Include="SymbolicDataAnalysisSolutionImpactValuesCalculator.cs" /> 199 214 <Compile Include="Symbols\Addition.cs" /> 215 <Compile Include="Symbols\AnalyticQuotient.cs" /> 200 216 <Compile Include="Symbols\And.cs" /> 201 217 <Compile Include="Symbols\AutoregressiveVariable.cs" /> … … 208 224 <Compile Include="Symbols\BinaryFactorVariable.cs" /> 209 225 <Compile Include="Symbols\BinaryFactorVariableTreeNode.cs" /> 226 <Compile Include="Symbols\Cube.cs" /> 210 227 <Compile Include="Symbols\FactorVariableTreeNode.cs" /> 211 228 <Compile Include="Symbols\FactorVariable.cs" /> 229 <Compile Include="Symbols\Absolute.cs" /> 230 <Compile Include="Symbols\CubeRoot.cs" /> 212 231 <Compile Include="Symbols\VariableBase.cs" /> 213 232 <Compile Include="Symbols\VariableTreeNodeBase.cs" /> -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Importer/InfixExpressionParser.cs
r15583 r16386 42 42 /// Expr = ['-' | '+'] Term { '+' Term | '-' Term } 43 43 /// Term = Fact { '*' Fact | '/' Fact } 44 /// Fact = '(' Expr ')' 45 /// | 'LAG' '(' varId ',' ['+' | '-' ] number ')' 46 /// | funcId '(' ArgList ')' 47 /// | VarExpr | number 44 /// Fact = SimpleFact [ '^' SimpleFact ] 45 /// SimpleFact = '(' Expr ')' 46 /// | '{' Expr '}' 47 /// | 'LAG' '(' varId ',' ['+' | '-' ] number ') 48 /// | funcId '(' ArgList ')' 49 /// | VarExpr 50 /// | number 48 51 /// ArgList = Expr { ',' Expr } 49 52 /// VarExpr = varId OptFactorPart … … 95 98 { "*", new Multiplication()}, 96 99 { "-", new Subtraction()}, 100 { "^", new Power() }, 101 { "ABS", new Absolute() }, 97 102 { "EXP", new Exponential()}, 98 103 { "LOG", new Logarithm()}, 99 { "POW", new Power() },104 { "POW", new Power() }, 100 105 { "ROOT", new Root()}, 101 106 { "SQR", new Square() }, 102 107 { "SQRT", new SquareRoot() }, 108 { "CUBE", new Cube() }, 109 { "CUBEROOT", new CubeRoot() }, 103 110 { "SIN",new Sine()}, 104 111 { "COS", new Cosine()}, … … 119 126 { "DAWSON", new Dawson()}, 120 127 { "EXPINT", new ExponentialIntegralEi()}, 128 { "AQ", new AnalyticQuotient() }, 121 129 { "MEAN", new Average()}, 122 130 { "IF", new IfThenElse()}, … … 167 175 && str[pos] != '*' 168 176 && str[pos] != '/' 177 && str[pos] != '^' 169 178 && str[pos] != ')' 170 179 && str[pos] != ']' 180 && str[pos] != '}' 171 181 && str[pos] != ',') { 172 182 sb.Append(str[pos]); … … 227 237 pos++; 228 238 yield return new Token { TokenType = TokenType.Operator, strVal = "*" }; 239 } else if (str[pos] == '^') { 240 pos++; 241 yield return new Token { TokenType = TokenType.Operator, strVal = "^" }; 229 242 } else if (str[pos] == '(') { 230 243 pos++; … … 239 252 pos++; 240 253 yield return new Token { TokenType = TokenType.RightBracket, strVal = "]" }; 254 } else if (str[pos] == '{') { 255 pos++; 256 yield return new Token { TokenType = TokenType.LeftPar, strVal = "{" }; 257 } else if (str[pos] == '}') { 258 pos++; 259 yield return new Token { TokenType = TokenType.RightPar, strVal = "}" }; 241 260 } else if (str[pos] == '=') { 242 261 pos++; … … 360 379 } 361 380 362 /// Fact = '(' Expr ')' 363 /// | 'LAG' '(' varId ',' ['+' | '-' ] number ')' 364 /// | funcId '(' ArgList ')' 365 /// | VarExpr | number 381 // Fact = SimpleFact ['^' SimpleFact] 382 private ISymbolicExpressionTreeNode ParseFact(Queue<Token> tokens) { 383 var expr = ParseSimpleFact(tokens); 384 var next = tokens.Peek(); 385 if (next.TokenType == TokenType.Operator && next.strVal == "^") { 386 tokens.Dequeue(); // skip; 387 388 var p = GetSymbol("^").CreateTreeNode(); 389 p.AddSubtree(expr); 390 p.AddSubtree(ParseSimpleFact(tokens)); 391 expr = p; 392 } 393 return expr; 394 } 395 396 397 /// SimpleFact = '(' Expr ')' 398 /// | '{' Expr '}' 399 /// | 'LAG' '(' varId ',' ['+' | '-' ] number ')' 400 /// | funcId '(' ArgList ') 401 /// | VarExpr 402 /// | number 366 403 /// ArgList = Expr { ',' Expr } 367 404 /// VarExpr = varId OptFactorPart … … 370 407 /// varVal = ident | ' ident ' | " ident " 371 408 /// ident = '_' | letter { '_' | letter | digit } 372 private ISymbolicExpressionTreeNode Parse Fact(Queue<Token> tokens) {409 private ISymbolicExpressionTreeNode ParseSimpleFact(Queue<Token> tokens) { 373 410 var next = tokens.Peek(); 374 411 if (next.TokenType == TokenType.LeftPar) { 375 tokens.Dequeue();412 var initPar = tokens.Dequeue(); // match par type 376 413 var expr = ParseExpr(tokens); 377 414 var rPar = tokens.Dequeue(); 378 415 if (rPar.TokenType != TokenType.RightPar) 379 throw new ArgumentException("expected )"); 416 throw new ArgumentException("expected closing parenthesis"); 417 if (initPar.strVal == "(" && rPar.strVal == "}") 418 throw new ArgumentException("expected closing )"); 419 if (initPar.strVal == "{" && rPar.strVal == ")") 420 throw new ArgumentException("expected closing }"); 380 421 return expr; 381 422 } else if (next.TokenType == TokenType.Identifier) { … … 424 465 if (rPar.TokenType != TokenType.RightPar) 425 466 throw new ArgumentException("expected )"); 467 426 468 427 469 return funcNode; -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Importer/SymbolicExpressionImporter.cs
r15583 r16386 41 41 {"*", new Multiplication()}, 42 42 {"-", new Subtraction()}, 43 {"ABS", new Absolute() }, 43 44 {"EXP", new Exponential()}, 44 45 {"LOG", new Logarithm()}, … … 47 48 {"SQR", new Square()}, 48 49 {"SQRT", new SquareRoot()}, 50 {"CUBE", new Cube()}, 51 {"CUBEROOT", new CubeRoot()}, 49 52 {"SIN",new Sine()}, 50 53 {"COS", new Cosine()}, … … 65 68 {"DAWSON", new Dawson()}, 66 69 {"EXPINT", new ExponentialIntegralEi()}, 70 {"AQ", new AnalyticQuotient() }, 67 71 {"MEAN", new Average()}, 68 72 {"IF", new IfThenElse()}, -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/OpCodes.cs
r15583 r16386 46 46 public const byte OR = 14; 47 47 public const byte NOT = 15; 48 public const byte XOR = 45;49 48 50 49 … … 83 82 public const byte Erf = 43; 84 83 public const byte Bessel = 44; 84 public const byte XOR = 45; 85 85 public const byte FactorVariable = 46; 86 86 public const byte BinaryFactorVariable = 47; 87 public const byte Absolute = 48; 88 public const byte AnalyticQuotient = 49; 89 public const byte Cube = 50; 90 public const byte CubeRoot = 51; 87 91 88 92 … … 113 117 { typeof(Power),OpCodes.Power}, 114 118 { typeof(Root),OpCodes.Root}, 115 { typeof(TimeLag), OpCodes.TimeLag}, 119 { typeof(TimeLag), OpCodes.TimeLag}, 116 120 { typeof(Integral), OpCodes.Integral}, 117 121 { typeof(Derivative), OpCodes.Derivative}, … … 135 139 { typeof(Bessel), OpCodes.Bessel}, 136 140 { typeof(FactorVariable), OpCodes.FactorVariable }, 137 { typeof(BinaryFactorVariable), OpCodes.BinaryFactorVariable } 141 { typeof(BinaryFactorVariable), OpCodes.BinaryFactorVariable }, 142 { typeof(Absolute), OpCodes.Absolute }, 143 { typeof(AnalyticQuotient), OpCodes.AnalyticQuotient }, 144 { typeof(Cube), OpCodes.Cube }, 145 { typeof(CubeRoot), OpCodes.CubeRoot } 138 146 }; 139 147 -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionCompiledTreeInterpreter.cs
r15583 r16386 41 41 42 42 #region method info for the commonly called functions 43 private static readonly MethodInfo Abs = typeof(Math).GetMethod("Abs", new[] { typeof(double) }); 43 44 private static readonly MethodInfo Sin = typeof(Math).GetMethod("Sin", new[] { typeof(double) }); 44 45 private static readonly MethodInfo Cos = typeof(Math).GetMethod("Cos", new[] { typeof(double) }); … … 207 208 return Expression.Divide(result, Expression.Constant((double)node.SubtreeCount)); 208 209 } 210 case OpCodes.Absolute: { 211 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 212 return Expression.Call(Abs, arg); 213 } 209 214 case OpCodes.Cos: { 210 215 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); … … 222 227 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 223 228 return Expression.Power(arg, Expression.Constant(2.0)); 229 } 230 case OpCodes.Cube: { 231 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 232 return Expression.Power(arg, Expression.Constant(3.0)); 224 233 } 225 234 case OpCodes.Power: { … … 231 240 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 232 241 return Expression.Call(Sqrt, arg); 242 } 243 case OpCodes.CubeRoot: { 244 var arg = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 245 return Expression.Power(arg, Expression.Constant(1.0 / 3.0)); 233 246 } 234 247 case OpCodes.Root: { … … 493 506 Expression.Assign(result, Expression.Call(Bessel, arg))), 494 507 result); 508 } 509 case OpCodes.AnalyticQuotient: { 510 var x1 = MakeExpr(node.GetSubtree(0), variableIndices, row, columns); 511 var x2 = MakeExpr(node.GetSubtree(1), variableIndices, row, columns); 512 return Expression.Divide(x1, 513 Expression.Call(Sqrt, 514 Expression.Add( 515 Expression.Constant(1.0), 516 Expression.Multiply(x2, x2)))); 495 517 } 496 518 case OpCodes.IfThenElse: { -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeILEmittingInterpreter.cs
r15583 r16386 50 50 private static MethodInfo round = typeof(Math).GetMethod("Round", new Type[] { typeof(double) }); 51 51 private static MethodInfo sqrt = typeof(Math).GetMethod("Sqrt", new Type[] { typeof(double) }); 52 private static MethodInfo abs = typeof(Math).GetMethod("Abs", new Type[] { typeof(double) }); 52 53 53 54 private static MethodInfo airyA = thisType.GetMethod("AiryA", new Type[] { typeof(double) }); … … 264 265 return; 265 266 } 267 case OpCodes.Absolute: { 268 CompileInstructions(il, state, ds); 269 il.Emit(System.Reflection.Emit.OpCodes.Call, abs); 270 return; 271 } 266 272 case OpCodes.Cos: { 267 273 CompileInstructions(il, state, ds); … … 311 317 return; 312 318 } 319 case OpCodes.Cube: { 320 CompileInstructions(il, state, ds); 321 il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 3.0); 322 il.Emit(System.Reflection.Emit.OpCodes.Call, power); 323 return; 324 } 313 325 case OpCodes.SquareRoot: { 314 326 CompileInstructions(il, state, ds); … … 316 328 return; 317 329 } 330 case OpCodes.CubeRoot: { 331 CompileInstructions(il, state, ds); 332 il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0 / 3.0); 333 il.Emit(System.Reflection.Emit.OpCodes.Call, power); 334 return; 335 } 318 336 case OpCodes.AiryA: { 319 337 CompileInstructions(il, state, ds); … … 389 407 CompileInstructions(il, state, ds); 390 408 il.Emit(System.Reflection.Emit.OpCodes.Call, sinIntegral); 409 return; 410 } 411 case OpCodes.AnalyticQuotient: { 412 CompileInstructions(il, state, ds); // x1 413 CompileInstructions(il, state, ds); // x2 414 415 il.Emit(System.Reflection.Emit.OpCodes.Dup); 416 il.Emit(System.Reflection.Emit.OpCodes.Mul); // x2*x2 417 il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); 418 il.Emit(System.Reflection.Emit.OpCodes.Mul); // 1+x2*x2 419 il.Emit(System.Reflection.Emit.OpCodes.Call, sqrt); 420 il.Emit(System.Reflection.Emit.OpCodes.Div); 391 421 return; 392 422 } -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs
r15583 r16386 203 203 return sum / currentInstr.nArguments; 204 204 } 205 case OpCodes.Absolute: { 206 return Math.Abs(Evaluate(dataset, ref row, state)); 207 } 205 208 case OpCodes.Cos: { 206 209 return Math.Cos(Evaluate(dataset, ref row, state)); … … 214 217 case OpCodes.Square: { 215 218 return Math.Pow(Evaluate(dataset, ref row, state), 2); 219 } 220 case OpCodes.Cube: { 221 return Math.Pow(Evaluate(dataset, ref row, state), 3); 216 222 } 217 223 case OpCodes.Power: { … … 223 229 return Math.Sqrt(Evaluate(dataset, ref row, state)); 224 230 } 231 case OpCodes.CubeRoot: { 232 return Math.Pow(Evaluate(dataset, ref row, state), 1.0 / 3.0); 233 } 225 234 case OpCodes.Root: { 226 235 double x = Evaluate(dataset, ref row, state); … … 340 349 if (double.IsNaN(x)) return double.NaN; 341 350 else return alglib.besseli0(x); 351 } 352 353 case OpCodes.AnalyticQuotient: { 354 var x1 = Evaluate(dataset, ref row, state); 355 var x2 = Evaluate(dataset, ref row, state); 356 return x1 / Math.Pow(1 + x2 * x2, 0.5); 342 357 } 343 358 case OpCodes.IfThenElse: { -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeLinearInterpreter.cs
r15583 r16386 215 215 if (instr.nArguments == 1) p = 1.0 / p; 216 216 instr.value = p; 217 } else if (instr.opCode == OpCodes.AnalyticQuotient) { 218 var x1 = code[instr.childIndex].value; 219 var x2 = code[instr.childIndex + 1].value; 220 instr.value = x1 / Math.Sqrt(1 + x2 * x2); 217 221 } else if (instr.opCode == OpCodes.Average) { 218 222 double s = code[instr.childIndex].value; … … 221 225 } 222 226 instr.value = s / instr.nArguments; 227 } else if (instr.opCode == OpCodes.Absolute) { 228 instr.value = Math.Abs(code[instr.childIndex].value); 223 229 } else if (instr.opCode == OpCodes.Cos) { 224 230 instr.value = Math.Cos(code[instr.childIndex].value); … … 229 235 } else if (instr.opCode == OpCodes.Square) { 230 236 instr.value = Math.Pow(code[instr.childIndex].value, 2); 237 } else if (instr.opCode == OpCodes.Cube) { 238 instr.value = Math.Pow(code[instr.childIndex].value, 3); 231 239 } else if (instr.opCode == OpCodes.Power) { 232 240 double x = code[instr.childIndex].value; … … 235 243 } else if (instr.opCode == OpCodes.SquareRoot) { 236 244 instr.value = Math.Sqrt(code[instr.childIndex].value); 245 } else if (instr.opCode == OpCodes.CubeRoot) { 246 instr.value = Math.Pow(code[instr.childIndex].value, 1.0 / 3.0); 237 247 } else if (instr.opCode == OpCodes.Root) { 238 248 double x = code[instr.childIndex].value; -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Plugin.cs.frame
r15589 r16386 37 37 [PluginDependency("HeuristicLab.Data", "3.3")] 38 38 [PluginDependency("HeuristicLab.Encodings.SymbolicExpressionTreeEncoding", "3.4")] 39 [PluginDependency("HeuristicLab.NativeInterpreter", "0.1")] 39 40 [PluginDependency("HeuristicLab.Operators", "3.3")] 40 41 [PluginDependency("HeuristicLab.Optimization", "3.3")] -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisModel.cs
r15583 r16386 34 34 /// </summary> 35 35 [StorableClass] 36 public abstract class SymbolicDataAnalysisModel : NamedItem, ISymbolicDataAnalysisModel {36 public abstract class SymbolicDataAnalysisModel : DataAnalysisModel, ISymbolicDataAnalysisModel { 37 37 public static new Image StaticItemImage { 38 38 get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; } … … 59 59 } 60 60 61 public IEnumerable<string> VariablesUsedForPrediction {61 public override IEnumerable<string> VariablesUsedForPrediction { 62 62 get { 63 63 var variables = … … 118 118 ConstantTreeNode alphaTreeNode = null; 119 119 ConstantTreeNode betaTreeNode = null; 120 // check if model has been scaled previously by analyzing the structure of the tree120 // check if model has a structure that can be re-used for scaling 121 121 var startNode = SymbolicExpressionTree.Root.GetSubtree(0); 122 if (startNode.GetSubtree(0).Symbol is Addition) { 123 var addNode = startNode.GetSubtree(0); 124 if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) { 125 alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode; 126 var mulNode = addNode.GetSubtree(0); 127 if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) { 128 betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode; 129 } 122 var addNode = startNode.GetSubtree(0); 123 if (addNode.Symbol is Addition && addNode.SubtreeCount == 2) { 124 alphaTreeNode = (ConstantTreeNode)addNode.Subtrees.LastOrDefault(n => n is ConstantTreeNode); 125 var mulNode = addNode.Subtrees.FirstOrDefault(n => n.Symbol is Multiplication); 126 if (mulNode != null) { 127 betaTreeNode = (ConstantTreeNode)mulNode.Subtrees.LastOrDefault(n => n is ConstantTreeNode); 130 128 } 131 129 } -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreeBottomUpSimilarityCalculator.cs
r15583 r16386 22 22 using System; 23 23 using System.Collections.Generic; 24 using System.Diagnostics;25 24 using System.Globalization; 26 25 using System.Linq; … … 31 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 32 31 32 using NodeMap = System.Collections.Generic.Dictionary<HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode, HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode>; 33 33 34 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 34 35 [StorableClass] … … 40 41 protected override bool IsCommutative { get { return true; } } 41 42 43 public bool MatchConstantValues { get; set; } 44 public bool MatchVariableWeights { get; set; } 45 42 46 [StorableConstructor] 43 47 protected SymbolicExpressionTreeBottomUpSimilarityCalculator(bool deserializing) … … 53 57 } 54 58 59 #region static methods 60 private static ISymbolicExpressionTreeNode ActualRoot(ISymbolicExpressionTree tree) { 61 return tree.Root.GetSubtree(0).GetSubtree(0); 62 } 63 64 public static double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) { 65 return CalculateSimilarity(ActualRoot(t1), ActualRoot(t2), strict); 66 } 67 68 public static double CalculateSimilarity(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) { 69 var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict }; 70 return CalculateSimilarity(n1, n2, strict); 71 } 72 73 public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) { 74 return ComputeBottomUpMapping(ActualRoot(t1), ActualRoot(t2), strict); 75 } 76 77 public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) { 78 var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict }; 79 return calculator.ComputeBottomUpMapping(n1, n2); 80 } 81 #endregion 82 55 83 public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) { 56 if (t1 == t2) 84 return CalculateSimilarity(t1, t2, out Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> map); 85 } 86 87 public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, out NodeMap map) { 88 if (t1 == t2) { 89 map = null; 57 90 return 1; 58 59 var map = ComputeBottomUpMapping(t1.Root, t2.Root);60 return 2.0 * map.Count / (t1.Length + t2.Length );91 } 92 map = ComputeBottomUpMapping(t1, t2); 93 return 2.0 * map.Count / (t1.Length + t2.Length - 4); // -4 for skipping root and start symbols in the two trees 61 94 } 62 95 … … 78 111 } 79 112 113 public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) { 114 return ComputeBottomUpMapping(t1.Root.GetSubtree(0).GetSubtree(0), t2.Root.GetSubtree(0).GetSubtree(0)); 115 } 116 80 117 public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) { 81 var comparer = new SymbolicExpressionTreeNodeComparer(); // use a node comparer because it's faster than calling node.ToString() (strings are expensive) and comparing strings82 118 var compactedGraph = Compact(n1, n2); 83 119 84 var forwardMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t1 => nodes of t2 85 var reverseMap = new Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode>(); // nodes of t2 => nodes of t1 86 87 // visit nodes in order of decreasing height to ensure correct mapping 88 var nodes1 = n1.IterateNodesPrefix().OrderByDescending(x => x.GetDepth()).ToList(); 89 var nodes2 = n2.IterateNodesPrefix().ToList(); 90 for (int i = 0; i < nodes1.Count; ++i) { 91 var v = nodes1[i]; 92 if (forwardMap.ContainsKey(v)) 120 IEnumerable<ISymbolicExpressionTreeNode> Subtrees(ISymbolicExpressionTreeNode node, bool commutative) { 121 var subtrees = node.IterateNodesPrefix(); 122 return commutative ? subtrees.OrderBy(x => compactedGraph[x].Hash) : subtrees; 123 } 124 125 var nodes1 = n1.IterateNodesPostfix().OrderByDescending(x => x.GetLength()); // by descending length so that largest subtrees are mapped first 126 var nodes2 = (List<ISymbolicExpressionTreeNode>)n2.IterateNodesPostfix(); 127 128 var forward = new NodeMap(); 129 var reverse = new NodeMap(); 130 131 foreach (ISymbolicExpressionTreeNode v in nodes1) { 132 if (forward.ContainsKey(v)) 93 133 continue; 134 94 135 var kv = compactedGraph[v]; 95 ISymbolicExpressionTreeNode w = null;96 for (int j = 0; j < nodes2.Count; ++j) { 97 var t = nodes2[j];98 if ( reverseMap.ContainsKey(t) || compactedGraph[t] != kv)136 var commutative = v.SubtreeCount > 1 && commutativeSymbols.Contains(kv.Label); 137 138 foreach (ISymbolicExpressionTreeNode w in nodes2) { 139 if (w.GetLength() != kv.Length || w.GetDepth() != kv.Depth || reverse.ContainsKey(w) || compactedGraph[w] != kv) 99 140 continue; 100 w = t; 141 142 // map one whole subtree to the other 143 foreach (var t in Subtrees(v, commutative).Zip(Subtrees(w, commutative), Tuple.Create)) { 144 forward[t.Item1] = t.Item2; 145 reverse[t.Item2] = t.Item1; 146 } 147 101 148 break; 102 149 } 103 if (w == null) continue; 104 105 // at this point we know that v and w are isomorphic, however, the mapping cannot be done directly 106 // (as in the paper) because the trees are unordered (subtree order might differ). the solution is 107 // to sort subtrees from under commutative labels (this will work because the subtrees are isomorphic!) 108 // while iterating over the two subtrees 109 var vv = IterateBreadthOrdered(v, comparer).ToList(); 110 var ww = IterateBreadthOrdered(w, comparer).ToList(); 111 int len = Math.Min(vv.Count, ww.Count); 112 for (int j = 0; j < len; ++j) { 113 var s = vv[j]; 114 var t = ww[j]; 115 Debug.Assert(!reverseMap.ContainsKey(t)); 116 117 forwardMap[s] = t; 118 reverseMap[t] = s; 119 } 120 } 121 122 return forwardMap; 150 } 151 152 return forward; 123 153 } 124 154 … … 132 162 var nodeMap = new Dictionary<ISymbolicExpressionTreeNode, GraphNode>(); // K 133 163 var labelMap = new Dictionary<string, GraphNode>(); // L 134 var childrenCount = new Dictionary<ISymbolicExpressionTreeNode, int>(); // Children135 164 136 165 var nodes = n1.IterateNodesPostfix().Concat(n2.IterateNodesPostfix()); // the disjoint union F 137 var list = new List<GraphNode>(); 138 var queue = new Queue<ISymbolicExpressionTreeNode>(); 139 140 foreach (var n in nodes) { 141 if (n.SubtreeCount == 0) { 142 var label = GetLabel(n); 166 var graph = new List<GraphNode>(); 167 168 IEnumerable<GraphNode> Subtrees(GraphNode g, bool commutative) { 169 var subtrees = g.SymbolicExpressionTreeNode.Subtrees.Select(x => nodeMap[x]); 170 return commutative ? subtrees.OrderBy(x => x.Hash) : subtrees; 171 } 172 173 foreach (var node in nodes) { 174 var label = GetLabel(node); 175 176 if (node.SubtreeCount == 0) { 143 177 if (!labelMap.ContainsKey(label)) { 144 var z = new GraphNode { SymbolicExpressionTreeNode = n, Label = label }; 145 labelMap[z.Label] = z; 146 } 147 nodeMap[n] = labelMap[label]; 148 queue.Enqueue(n); 178 labelMap[label] = new GraphNode(node, label); 179 } 180 nodeMap[node] = labelMap[label]; 149 181 } else { 150 childrenCount[n] = n.SubtreeCount; 151 } 152 } 153 while (queue.Any()) { 154 var n = queue.Dequeue(); 155 if (n.SubtreeCount > 0) { 182 var v = new GraphNode(node, label); 156 183 bool found = false; 157 var label = n.Symbol.Name; 158 var depth = n.GetDepth(); 159 160 bool sort = n.SubtreeCount > 1 && commutativeSymbols.Contains(label); 161 var nSubtrees = n.Subtrees.Select(x => nodeMap[x]).ToList(); 162 if (sort) nSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label)); 163 164 for (int i = list.Count - 1; i >= 0; --i) { 165 var w = list[i]; 166 if (!(n.SubtreeCount == w.SubtreeCount && label == w.Label && depth == w.Depth)) 184 var commutative = node.SubtreeCount > 1 && commutativeSymbols.Contains(label); 185 186 var vv = Subtrees(v, commutative); 187 188 foreach (var w in graph) { 189 if (v.Depth != w.Depth || v.SubtreeCount != w.SubtreeCount || v.Length != w.Length || v.Label != w.Label) { 167 190 continue; 168 169 // sort V and W when the symbol is commutative because we are dealing with unordered trees 170 var m = w.SymbolicExpressionTreeNode; 171 var mSubtrees = m.Subtrees.Select(x => nodeMap[x]).ToList(); 172 if (sort) mSubtrees.Sort((a, b) => string.CompareOrdinal(a.Label, b.Label)); 173 174 found = nSubtrees.SequenceEqual(mSubtrees); 191 } 192 193 var ww = Subtrees(w, commutative); 194 found = vv.SequenceEqual(ww); 195 175 196 if (found) { 176 nodeMap[n ] = w;197 nodeMap[node] = w; 177 198 break; 178 199 } 179 200 } 180 181 201 if (!found) { 182 var w = new GraphNode { SymbolicExpressionTreeNode = n, Label = label, Depth = depth }; 183 list.Add(w); 184 nodeMap[n] = w; 202 nodeMap[node] = v; 203 graph.Add(v); 185 204 } 186 205 } 187 188 if (n == n1 || n == n2) 189 continue; 190 191 var p = n.Parent; 192 if (p == null) 193 continue; 194 195 childrenCount[p]--; 196 197 if (childrenCount[p] == 0) 198 queue.Enqueue(p); 199 } 200 206 } 201 207 return nodeMap; 202 208 } 203 209 204 private IEnumerable<ISymbolicExpressionTreeNode> IterateBreadthOrdered(ISymbolicExpressionTreeNode node, ISymbolicExpressionTreeNodeComparer comparer) { 205 var list = new List<ISymbolicExpressionTreeNode> { node }; 206 int i = 0; 207 while (i < list.Count) { 208 var n = list[i]; 209 if (n.SubtreeCount > 0) { 210 var subtrees = commutativeSymbols.Contains(node.Symbol.Name) ? n.Subtrees.OrderBy(x => x, comparer) : n.Subtrees; 211 list.AddRange(subtrees); 212 } 213 i++; 214 } 215 return list; 216 } 217 218 private static string GetLabel(ISymbolicExpressionTreeNode node) { 210 private string GetLabel(ISymbolicExpressionTreeNode node) { 219 211 if (node.SubtreeCount > 0) 220 212 return node.Symbol.Name; 221 213 222 var constant = node as ConstantTreeNode; 223 if (constant != null) 224 return constant.Value.ToString(CultureInfo.InvariantCulture); 225 226 var variable = node as VariableTreeNode; 227 if (variable != null) 228 return variable.Weight + variable.VariableName; 214 if (node is ConstantTreeNode constant) 215 return MatchConstantValues ? constant.Value.ToString(CultureInfo.InvariantCulture) : constant.Symbol.Name; 216 217 if (node is VariableTreeNode variable) 218 return MatchVariableWeights ? variable.Weight + variable.VariableName : variable.VariableName; 229 219 230 220 return node.ToString(); … … 232 222 233 223 private class GraphNode { 234 public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode; 235 public string Label; 236 public int Depth; 224 private GraphNode() { } 225 226 public GraphNode(ISymbolicExpressionTreeNode node, string label) { 227 SymbolicExpressionTreeNode = node; 228 Label = label; 229 Hash = GetHashCode(); 230 Depth = node.GetDepth(); 231 Length = node.GetLength(); 232 } 233 234 public int Hash { get; } 235 public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode { get; } 236 public string Label { get; } 237 public int Depth { get; } 237 238 public int SubtreeCount { get { return SymbolicExpressionTreeNode.SubtreeCount; } } 239 public int Length { get; } 238 240 } 239 241 }
Note: See TracChangeset
for help on using the changeset viewer.