Changeset 16096
- Timestamp:
- 08/29/18 18:16:05 (6 years ago)
- Location:
- branches/2457_ExpertSystem
- Files:
-
- 1 added
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/Analysis/InformationAnalyzer.cs
r15279 r16096 20 20 #endregion 21 21 22 using System.Linq; 22 23 using HeuristicLab.Common; 23 24 using HeuristicLab.Core; … … 27 28 using HeuristicLab.Parameters; 28 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 using System.Linq;30 using System;31 30 32 31 namespace HeuristicLab.Analysis.FitnessLandscape { … … 125 124 var ic = new DoubleValue(analysis.InformationContent.FirstOrDefault()); 126 125 InformationContentParameter.ActualValue = ic; 127 AddOrUpdateResult(results,InformationContentParameter.Name, ic);126 results.AddOrUpdateResult(InformationContentParameter.Name, ic); 128 127 var pic = new DoubleValue(analysis.PartialInformationContent.FirstOrDefault()); 129 128 PartialInformationContentParameter.ActualValue = pic; 130 AddOrUpdateResult(results,PartialInformationContentParameter.Name, pic);129 results.AddOrUpdateResult(PartialInformationContentParameter.Name, pic); 131 130 var dbi = new DoubleValue(analysis.DensityBasinInformation.FirstOrDefault()); 132 131 DensityBasinInformationParameter.ActualValue = dbi; 133 AddOrUpdateResult(results,DensityBasinInformationParameter.Name, dbi);132 results.AddOrUpdateResult(DensityBasinInformationParameter.Name, dbi); 134 133 var @is = new DoubleValue(analysis.InformationStability); 135 134 InformationStabilityParameter.ActualValue = @is; 136 AddOrUpdateResult(results,InformationStabilityParameter.Name, @is);135 results.AddOrUpdateResult(InformationStabilityParameter.Name, @is); 137 136 var regularity = new DoubleValue(1.0 * analysis.Regularity / qualities.Count); 138 137 RegularityParameter.ActualValue = regularity; 139 AddOrUpdateResult(results,RegularityParameter.Name, regularity);138 results.AddOrUpdateResult(RegularityParameter.Name, regularity); 140 139 var diversity = new DoubleValue(1.0 * analysis.Diversity / qualities.Count); 141 140 DiversityParameter.ActualValue = diversity; 142 AddOrUpdateResult(results,DiversityParameter.Name, diversity);141 results.AddOrUpdateResult(DiversityParameter.Name, diversity); 143 142 var totalEntropy = new DoubleValue(analysis.TotalEntropy.FirstOrDefault()); 144 143 TotalEntropyParameter.ActualValue = totalEntropy; 145 AddOrUpdateResult(results,TotalEntropyParameter.Name, totalEntropy);144 results.AddOrUpdateResult(TotalEntropyParameter.Name, totalEntropy); 146 145 var peakIc = new DoubleValue(analysis.PeakInformationContent.Value); 147 146 PeakInformationContentParameter.ActualValue = peakIc; 148 AddOrUpdateResult(results,PeakInformationContentParameter.Name, peakIc);147 results.AddOrUpdateResult(PeakInformationContentParameter.Name, peakIc); 149 148 var peakDbi = new DoubleValue(analysis.PeakDensityBasinInformation.Value); 150 149 PeakDensityBasinInformationParameter.ActualValue = peakDbi; 151 AddOrUpdateResult(results,PeakDensityBasinInformationParameter.Name, peakDbi);150 results.AddOrUpdateResult(PeakDensityBasinInformationParameter.Name, peakDbi); 152 151 153 152 var itable = GetInformationTable(analysis); 154 AddOrUpdateResult(results,InformationAnalysisParameter.Name, itable);153 results.AddOrUpdateResult(InformationAnalysisParameter.Name, itable); 155 154 return base.Apply(); 156 155 } … … 176 175 return dt; 177 176 } 178 179 private static void AddOrUpdateResult(ResultCollection results, string name, IItem item, bool clone = false) {180 IResult r;181 if (!results.TryGetValue(name, out r)) {182 results.Add(new Result(name, clone ? (IItem)item.Clone() : item));183 } else r.Value = clone ? (IItem)item.Clone() : item;184 }185 177 } 186 178 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/Analysis/RuggednessAnalyzer.cs
r13583 r16096 20 20 #endregion 21 21 22 using System.Linq; 22 23 using HeuristicLab.Common; 23 24 using HeuristicLab.Core; … … 27 28 using HeuristicLab.Parameters; 28 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 using System.Linq;30 30 31 31 namespace HeuristicLab.Analysis.FitnessLandscape { 32 [Item("Ruggedness Analyzer", "Analyzes autocorrelation for one mutation step and correlation length. ")]32 [Item("Ruggedness Analyzer", "Analyzes autocorrelation for one mutation step and correlation length. Correlation length is calculated according to the statistical correlation length defined by Hordijk, W., 1996. A measure of landscapes. Evolutionary computation, 4(4), pp.335-360.")] 33 33 [StorableClass] 34 34 public class RuggednessAnalyzer : SingleSuccessorOperator, IQualityTrailAnalyzer { … … 50 50 get { return (LookupParameter<IntValue>)Parameters["CorrelationLength"]; } 51 51 } 52 public ValueLookupParameter<DoubleValue> LimitParameter { 53 get { return (ValueLookupParameter<DoubleValue>)Parameters["Limit"]; } 54 } 52 55 #endregion 53 56 … … 60 63 Parameters.Add(new LookupParameter<DoubleValue>("AutoCorrelation1", "Autocorrelation for one mutation step.")); 61 64 Parameters.Add(new LookupParameter<IntValue>("CorrelationLength", "The correlation length.")); 65 Parameters.Add(new ValueLookupParameter<DoubleValue>("Limit", "The limit for the statistical correlation length, if left empty 2 / sqrt(n), where n = length of walk will be used, as defined by Hordijk 1996.")); 62 66 } 63 67 … … 70 74 if (qualityTrail == null || qualityTrail.Rows.Count <= 0) return base.Apply(); 71 75 var results = ResultsParameter.ActualValue; 76 var limit = LimitParameter.ActualValue?.Value; 72 77 double[] autocorrelationValues; 73 var correlationLength = RuggednessCalculator.CalculateCorrelationLength(qualityTrail.Rows.First().Values.ToArray(), out autocorrelationValues );78 var correlationLength = RuggednessCalculator.CalculateCorrelationLength(qualityTrail.Rows.First().Values.ToArray(), out autocorrelationValues, limit); 74 79 var cl = new IntValue(correlationLength); 75 80 CorrelationLengthParameter.ActualValue = cl; 76 AddOrUpdateResult(results,CorrelationLengthParameter.Name, cl);81 results.AddOrUpdateResult(CorrelationLengthParameter.Name, cl); 77 82 var ac1 = new DoubleValue(autocorrelationValues.Length > 1 ? autocorrelationValues[1] : 0.0); 78 83 AutoCorrelation1Parameter.ActualValue = ac1; 79 AddOrUpdateResult(results,AutoCorrelation1Parameter.Name, ac1);84 results.AddOrUpdateResult(AutoCorrelation1Parameter.Name, ac1); 80 85 return base.Apply(); 81 }82 83 private static void AddOrUpdateResult(ResultCollection results, string name, IItem item, bool clone = false) {84 IResult r;85 if (!results.TryGetValue(name, out r)) {86 results.Add(new Result(name, clone ? (IItem)item.Clone() : item));87 } else r.Value = clone ? (IItem)item.Clone() : item;88 86 } 89 87 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/Analysis/RuggednessCalculator.cs
r13583 r16096 20 20 #endregion 21 21 22 using HeuristicLab.Common;23 using HeuristicLab.Core;24 using HeuristicLab.Data;25 using HeuristicLab.Operators;26 using HeuristicLab.Parameters;27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;28 22 using System; 29 23 using System.Collections.Generic; 30 using System.Linq;31 24 32 25 namespace HeuristicLab.Analysis.FitnessLandscape { 33 [Item("Ruggedness Calculator", "Calculates ruggedness descriptors froma given quality trail.")] 34 [StorableClass] 35 public class RuggednessCalculator : SingleSuccessorOperator { 36 37 #region Parameters 38 public LookupParameter<DataTable> QualityTrailParameter { 39 get { return (LookupParameter<DataTable>)Parameters["QualityTrail"]; } 40 } 41 public LookupParameter<IntValue> CorrelationLengthParameter { 42 get { return (LookupParameter<IntValue>)Parameters["CorrelationLength"]; } 43 } 44 public LookupParameter<DoubleArray> AutoCorrelationParameter { 45 get { return (LookupParameter<DoubleArray>)Parameters["AutoCorrelation"]; } 46 } 47 #endregion 48 49 #region Constructors & Cloning 50 [StorableConstructor] 51 protected RuggednessCalculator(bool deserializing) : base(deserializing) { } 52 protected RuggednessCalculator(RuggednessCalculator original, Cloner cloner) : base(original, cloner) { } 53 public RuggednessCalculator() { 54 Parameters.Add(new LookupParameter<DataTable>("QualityTrail", "Historical values of walk qualities")); 55 Parameters.Add(new LookupParameter<IntValue>("CorrelationLength", "Average maximum distances between correlated quality values.")); 56 Parameters.Add(new LookupParameter<DoubleArray>("AutoCorrelation", "AutoCorrelation")); 57 } 58 public override IDeepCloneable Clone(Cloner cloner) { 59 return new RuggednessCalculator(this, cloner); 60 } 61 #endregion 62 63 public override IOperation Apply() { 64 double[] qualities = QualityTrailParameter.ActualValue.Rows.First().Values.ToArray(); 65 double[] autocorrelation; 66 CorrelationLengthParameter.ActualValue = new IntValue(CalculateCorrelationLength(qualities, out autocorrelation)); 67 AutoCorrelationParameter.ActualValue = new DoubleArray(autocorrelation); 68 return base.Apply(); 69 } 70 71 public static int CalculateCorrelationLength(double[] qualities, out double[] acf) { 26 public static class RuggednessCalculator { 27 /// <summary> 28 /// Calculates statistical correlation length as defined by Hordijk, W., 1996. A measure of landscapes. Evolutionary computation, 4(4), pp.335-360. 29 /// </summary> 30 /// <param name="qualities">The quality trail observed.</param> 31 /// <param name="acf">The autocorrelation values for each step s, including 0 => acf[0] = 1.</param> 32 /// <param name="limit">The statistical limit, correlation length will be the last step before acf falls within this limit. If omitted it is calculated as 2 / sqrt(qualities.Length).</param> 33 /// <returns>The statistical correlation length</returns> 34 public static int CalculateCorrelationLength(double[] qualities, out double[] acf, double? limit = null) { 35 if (!limit.HasValue) limit = 2.0 / Math.Sqrt(qualities.Length); 72 36 double[] correlations = new double[qualities.Length]; 73 37 alglib.corr.corrr1dcircular(qualities, qualities.Length, qualities, qualities.Length, ref correlations); … … 86 50 value = 1; 87 51 autocorrelation.Add(value); 88 if ( value < 0&& correlationLength < 0) correlationLength = counter;52 if (Math.Abs(value) < limit && correlationLength < 0) correlationLength = counter; 89 53 } 90 54 acf = autocorrelation.ToArray(); 91 55 return correlationLength - 1; 92 56 } 93 94 public static bool AnyGreaterOne(double[] values) {95 return values.Any(d => d > 1);96 }97 57 } 98 58 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/Analysis/UpDownWalkAnalyzer.cs
r13583 r16096 20 20 #endregion 21 21 22 using System.Linq; 22 23 using HeuristicLab.Common; 23 24 using HeuristicLab.Core; … … 27 28 using HeuristicLab.Parameters; 28 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 using System.Linq;30 30 31 31 namespace HeuristicLab.Analysis.FitnessLandscape { … … 123 123 var uv = new DoubleValue(topVals.Variance()); 124 124 UpperVarianceParameter.ActualValue = uv; 125 AddOrUpdateResult(results,UpperVarianceParameter.Name, uv);125 results.AddOrUpdateResult(UpperVarianceParameter.Name, uv); 126 126 var ul = new DoubleValue(topLengths.Average()); 127 127 UpWalkLengthParameter.ActualValue = ul; 128 AddOrUpdateResult(results,UpWalkLengthParameter.Name, ul);128 results.AddOrUpdateResult(UpWalkLengthParameter.Name, ul); 129 129 var ulv = new DoubleValue(topLengths.Variance()); 130 130 UpWalkLenVarParameter.ActualValue = ulv; 131 AddOrUpdateResult(results,UpWalkLenVarParameter.Name, ulv);131 results.AddOrUpdateResult(UpWalkLenVarParameter.Name, ulv); 132 132 } 133 133 if (bottoms.Count > 0) { … … 136 136 var lv = new DoubleValue(bottomVals.Variance()); 137 137 LowerVarianceParameter.ActualValue = lv; 138 AddOrUpdateResult(results,LowerVarianceParameter.Name, lv);138 results.AddOrUpdateResult(LowerVarianceParameter.Name, lv); 139 139 var dl = new DoubleValue(bottomLengths.Average()); 140 140 DownWalkLengthParameter.ActualValue = dl; 141 AddOrUpdateResult(results,DownWalkLengthParameter.Name, dl);141 results.AddOrUpdateResult(DownWalkLengthParameter.Name, dl); 142 142 var dlv = new DoubleValue(bottomLengths.Variance()); 143 143 DownWalkLenVarParameter.ActualValue = dlv; 144 AddOrUpdateResult(results,DownWalkLenVarParameter.Name, dlv);144 results.AddOrUpdateResult(DownWalkLenVarParameter.Name, dlv); 145 145 } 146 146 } … … 149 149 return base.Apply(); 150 150 } 151 152 private static void AddOrUpdateResult(ResultCollection results, string name, IItem item, bool clone = false) {153 IResult r;154 if (!results.TryGetValue(name, out r)) {155 results.Add(new Result(name, clone ? (IItem)item.Clone() : item));156 } else r.Value = clone ? (IItem)item.Clone() : item;157 }158 151 } 159 152 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/HeuristicLab.Analysis.FitnessLandscape-3.3.csproj
r15694 r16096 207 207 <Compile Include="ProblemCharacteristicAnalysis\CharacteristicCalculator.cs" /> 208 208 <Compile Include="ProblemCharacteristicAnalysis\CurveAnalysis.cs" /> 209 <Compile Include="Algorithms\DirectedWalk.cs" /> 209 210 <Compile Include="ProblemCharacteristicAnalysis\DoubleMatrixCharacteristicCalculator.cs" /> 210 211 <Compile Include="ProblemCharacteristicAnalysis\PermutationPathAnalysis.cs" /> -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/ProblemCharacteristicAnalysis/CurveAnalysis.cs
r14691 r16096 1 using System; 1 #region License Information 2 /* HeuristicLab 3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 * 5 * This file is part of HeuristicLab. 6 * 7 * HeuristicLab is free software: you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation, either version 3 of the License, or 10 * (at your option) any later version. 11 * 12 * HeuristicLab is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 #endregion 21 22 using System; 2 23 using System.Collections.Generic; 3 24 using System.Linq; … … 7 28 public static CurveAnalysisResult GetCharacteristics(List<List<Tuple<T, double>>> trajectories, Func<T, T, double> distFunc) { 8 29 trajectories = trajectories.Where(x => x.Count > 5).ToList(); 30 var symbols = GetSymbols(trajectories); 9 31 var f1 = trajectories.Select(path => ApproximateDerivative(path, distFunc).ToList()).ToList(); 10 32 var f2 = f1.Select(d1 => ApproximateDerivative(d1, distFunc).ToList()).ToList(); 11 33 12 var sharpness = f1.Average(x => x.Average(y => Math.Abs(y.Item2))); //f2.Average(x => Area(x, distFunc));34 var sharpness = f1.Average(x => x.Average(y => Math.Abs(y.Item2))); 13 35 var bumpiness = 0.0; 14 36 var flatness = 0.0; 15 37 var count = 0; 16 38 for (var p = 0; p < f2.Count; p++) { 17 39 if (f2[p].Count <= 2) continue; 40 count++; 18 41 var bump = 0; 19 42 var flat = 0; … … 28 51 flatness += flat / (f2[p].Count - 1.0); 29 52 } 30 bumpiness /= f2.Count; 31 flatness /= f2.Count; 32 return new CurveAnalysisResult(sharpness, bumpiness, flatness); 53 bumpiness /= count; 54 flatness /= count; 55 var per = new[] { 25, 50, 75 }; 56 return new CurveAnalysisResult(sharpness, bumpiness, flatness, 57 per.Select(p => symbols.Downward.GetPercentileOrDefault(p, 0)).ToArray(), 58 per.Select(p => symbols.Neutral.GetPercentileOrDefault(p, 0)).ToArray(), 59 per.Select(p => symbols.Upward.GetPercentileOrDefault(p, 0)).ToArray()); 33 60 } 34 61 35 private static double Area(IEnumerable<Tuple<T, double>> path, Func<T, T, double> distFunc) {36 var iter = path.GetEnumerator();37 if (!iter.MoveNext()) return 0.0;38 var area = 0.0;39 var prev = iter.Current;40 while (iter.MoveNext()) {41 area += TrapezoidArea(prev, iter.Current, distFunc);42 prev = iter.Current;62 private static Symbols GetSymbols(List<List<Tuple<T, double>>> trajectories) { 63 var sym = new Symbols(); 64 foreach (var t in trajectories) { 65 var prev = t[0]; 66 for (var i = 1; i < t.Count; i++) { 67 sym.Add(i / (double)t.Count, t[i].Item2, prev.Item2); 68 prev = t[i]; 69 } 43 70 } 44 return area; 45 } 46 47 private static double TrapezoidArea(Tuple<T, double> a, Tuple<T, double> b, Func<T, T, double> distFunc) { 48 var area = 0.0; 49 var dist = distFunc(a.Item1, b.Item1); 50 if ((a.Item2 <= 0 && b.Item2 <= 0) || (a.Item2 >= 0 && b.Item2 >= 0)) 51 area += dist * (Math.Abs(a.Item2) + Math.Abs(b.Item2)) / 2.0; 52 else { 53 var k = (b.Item2 - a.Item2) / dist; 54 var d = a.Item2; 55 var x = -d / k; 56 area += Math.Abs(x * a.Item2 / 2.0); 57 area += Math.Abs((dist - x) * b.Item2 / 2.0); 58 } 59 return area; 71 return sym; 60 72 } 61 73 … … 80 92 } 81 93 94 public enum CurveAnalysisFeature { Sharpness, Bumpiness, Flatness, 95 DownQ1, DownQ2, DownQ3, 96 NeutQ1, NeutQ2, NeutQ3, 97 UpQ1, UpQ2, UpQ3 } 98 82 99 public class CurveAnalysisResult { 83 public double Sharpness { get; private set; } 84 public double Bumpiness { get; private set; } 85 public double Flatness { get; private set; } 100 private Dictionary<CurveAnalysisFeature, double> results = new Dictionary<CurveAnalysisFeature, double>(); 86 101 87 public string[] GetNames() { 88 return new[] { "Sharpness", "Bumpiness", "Flatness" }; 102 public double GetValue(CurveAnalysisFeature name) { 103 return results[name]; 104 } 105 106 public static IEnumerable<CurveAnalysisFeature> AllFeatures { 107 get { return Enum.GetValues(typeof(CurveAnalysisFeature)).Cast<CurveAnalysisFeature>(); } 89 108 } 90 109 91 110 public double[] GetValues() { 92 return new[] { Sharpness, Bumpiness, Flatness };111 return AllFeatures.Select(x => results[x]).ToArray(); 93 112 } 94 113 95 public CurveAnalysisResult(double sharpness, double bumpiness, double flatness) { 96 Sharpness = sharpness; 97 Bumpiness = bumpiness; 98 Flatness = flatness; 114 public CurveAnalysisResult(double sharpness, double bumpiness, double flatness, double[] down, double[] neut, double[] up) { 115 foreach (var v in AllFeatures.Zip(new[] { sharpness, bumpiness, flatness }.Concat(down).Concat(neut).Concat(up), (n, v) => Tuple.Create(n, v))) { 116 results[v.Item1] = v.Item2; 117 } 118 } 119 } 120 121 public class Symbols { 122 public Statistics Downward { get; } = new Statistics(); 123 public Statistics Neutral { get; } = new Statistics(); 124 public Statistics Upward { get; } = new Statistics(); 125 126 public void Add(double step, double fit, double prev) { 127 if (fit < prev) Downward.Add(step); 128 else if (fit > prev) Upward.Add(step); 129 else Neutral.Add(step); 130 } 131 } 132 133 public sealed class Statistics { 134 private List<double> values = new List<double>(); 135 136 public int Count { get { return values.Count; } } 137 138 public double Min { get; private set; } 139 public double Max { get; private set; } 140 public double Total { get; private set; } 141 public double Mean { get; private set; } 142 public double StdDev { get { return Math.Sqrt(Variance); } } 143 public double Variance { get { return Count > 0 ? variance / Count : 0.0; } } 144 145 private double variance; 146 private bool sorted = false; 147 148 public double GetPercentileOrDefault(int p, double @default = default(double)) { 149 if (p < 0 || p > 100) throw new ArgumentOutOfRangeException(nameof(p), p, "Must be in range [0;100]"); 150 SortIfNecessary(); 151 if (Count == 0) return @default; 152 else if (Count == 1) return values[0]; 153 if (p == 100) return values[Count - 1]; 154 155 var x = p / 100.0 * (Count - 1); 156 var inte = (int)x; 157 var frac = x - inte; 158 159 return values[inte] + frac * (values[inte + 1] - values[inte]); 160 } 161 162 public void Add(double value) { 163 sorted = false; 164 values.Add(value); 165 166 if (Count == 1) { 167 Min = Max = Mean = Total = value; 168 } else { 169 if (value < Min) Min = value; 170 if (value > Max) Max = value; 171 172 Total += value; 173 var oldMean = Mean; 174 Mean = oldMean + (value - oldMean) / Count; 175 variance = variance + (value - oldMean) * (value - Mean); 176 } 177 } 178 179 public void AddRange(IEnumerable<double> values) { 180 foreach (var v in values) Add(v); 181 } 182 183 private void SortIfNecessary() { 184 if (!sorted) { 185 values.Sort(); 186 sorted = true; 187 } 99 188 } 100 189 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/ProblemCharacteristicAnalysis/PermutationPathAnalysis.cs
r14691 r16096 1 using System; 1 #region License Information 2 /* HeuristicLab 3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 * 5 * This file is part of HeuristicLab. 6 * 7 * HeuristicLab is free software: you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation, either version 3 of the License, or 10 * (at your option) any later version. 11 * 12 * HeuristicLab is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 #endregion 21 22 using System; 2 23 using System.Collections.Generic; 3 24 using HeuristicLab.Encodings.PermutationEncoding; -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/ProblemCharacteristicAnalysis/QAP/QAPCharacteristicCalculator.cs
r14678 r16096 20 20 #endregion 21 21 22 using System; 23 using System.Collections.Generic; 24 using System.Linq; 22 25 using HeuristicLab.Common; 23 26 using HeuristicLab.Core; … … 26 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 27 30 using HeuristicLab.Problems.QuadraticAssignment; 28 using System;29 using System.Collections.Generic;30 using System.Linq;31 31 32 32 namespace HeuristicLab.Analysis.FitnessLandscape { … … 61 61 if (chara == "Dimension") 62 62 yield return new Result(chara, new IntValue(qap.Weights.Rows)); 63 if (chara == "FlowDominance")63 else if (chara == "FlowDominance") 64 64 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.CoeffVariation(qap.Weights))); 65 if (chara == "DistanceDominance")65 else if (chara == "DistanceDominance") 66 66 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.CoeffVariation(qap.Distances))); 67 if (chara == "FlowAsymmetry")67 else if (chara == "FlowAsymmetry") 68 68 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Asymmetry(qap.Weights))); 69 if (chara == "DistanceAsymmetry")69 else if (chara == "DistanceAsymmetry") 70 70 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Asymmetry(qap.Distances))); 71 if (chara == "FlowSparsity")71 else if (chara == "FlowSparsity") 72 72 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Sparsity(qap.Weights))); 73 if (chara == "DistanceSparsity")73 else if (chara == "DistanceSparsity") 74 74 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Sparsity(qap.Distances))); 75 if (chara == "FlowSkewness")75 else if (chara == "FlowSkewness") 76 76 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Skewness(qap.Weights))); 77 if (chara == "DistanceSkewness")77 else if (chara == "DistanceSkewness") 78 78 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Skewness(qap.Distances))); 79 if (chara == "FlowDisparity")79 else if (chara == "FlowDisparity") 80 80 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Disparity(qap.Weights))); 81 if (chara == "DistanceDisparity")81 else if (chara == "DistanceDisparity") 82 82 yield return new Result(chara, new DoubleValue(DoubleMatrixCharacteristicCalculator.Disparity(qap.Distances))); 83 83 } -
branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/ProblemCharacteristicAnalysis/QAP/QAPDirectedWalk.cs
r15031 r16096 20 20 #endregion 21 21 22 using System; 23 using System.Collections.Generic; 24 using System.Linq; 25 using System.Threading; 22 26 using HeuristicLab.Common; 23 27 using HeuristicLab.Core; … … 29 33 using HeuristicLab.Problems.QuadraticAssignment; 30 34 using HeuristicLab.Random; 31 using System;32 using System.Collections.Generic;33 using System.Linq;34 using System.Threading;35 35 36 36 namespace HeuristicLab.Analysis.FitnessLandscape { … … 38 38 [StorableClass] 39 39 public class QAPDirectedWalk : CharacteristicCalculator { 40 41 public enum WalkType { RandomRandom, RandomGlobal, RandomLocal, LocalLocal, LocalGlobal, LocalInverse } 42 43 private const string NBHOOD_STR = "Swap2"; 40 44 41 45 public IFixedValueParameter<IntValue> PathsParameter { … … 51 55 } 52 56 53 public IFixedValueParameter< BoolValue> LocalOptimaParameter {54 get { return (IFixedValueParameter< BoolValue>)Parameters["LocalOptima"]; }57 public IFixedValueParameter<EnumValue<WalkType>> TypeParameter { 58 get { return (IFixedValueParameter<EnumValue<WalkType>>)Parameters["Type"]; } 55 59 } 56 60 … … 70 74 } 71 75 72 public bool LocalOptima{73 get { return LocalOptimaParameter.Value.Value; }74 set { LocalOptimaParameter.Value.Value = value;}76 public WalkType Type { 77 get { return TypeParameter.Value.Value; } 78 set { TypeParameter.Value.Value = value;} 75 79 } 76 80 … … 79 83 private QAPDirectedWalk(QAPDirectedWalk original, Cloner cloner) : base(original, cloner) { } 80 84 public QAPDirectedWalk() { 81 characteristics.AddRange(new[] { "Swap2.Sharpness", "Swap2.Bumpiness", "Swap2.Flatness" } 82 .Select(x => new StringValue(x)).ToList()); 85 characteristics.AddRange(CurveAnalysisResult.AllFeatures.Select(x => new StringValue(x.ToString()))); 86 characteristics.AddRange(new[] { "AutoCorrelation1", "CorrelationLength", "InformationContent", 87 "DensityBasinInformation", "PartialInformationContent", "InformationStability", 88 "Diversity", "Regularity", "TotalEntropy", "PeakInformationContent", 89 "PeakDensityBasinInformation" }.Select(x => new StringValue(x))); 90 83 91 Parameters.Add(new FixedValueParameter<IntValue>("Paths", "The number of paths to explore (a path is a set of solutions that connect two randomly chosen solutions).", new IntValue(50))); 84 92 Parameters.Add(new FixedValueParameter<BoolValue>("BestImprovement", "Whether the best of all alternatives should be chosen for each step in the path or just the first improving (least degrading) move should be made.", new BoolValue(true))); 85 93 Parameters.Add(new OptionalValueParameter<IntValue>("Seed", "The seed for the random number generator.")); 86 Parameters.Add(new FixedValueParameter< BoolValue>("LocalOptima", "Whether to perform walks between local optima.", new BoolValue(false)));94 Parameters.Add(new FixedValueParameter<EnumValue<WalkType>>("Type", "Type of directed walk to perfom.", new EnumValue<WalkType>(WalkType.RandomRandom))); 87 95 } 88 96 … … 95 103 } 96 104 105 private double _evaluatedSolutions; 106 97 107 public override IEnumerable<IResult> Calculate() { 108 _evaluatedSolutions = 0; 109 var permutations = CalculateRelinkingPoints(); 110 111 var trajectories = Run(permutations).ToList(); 112 var result = PermutationPathAnalysis.GetCharacteristics(trajectories); 113 114 #region Calculate Information Analysis Features 115 double avgAc1 = 0, avgCorLen = 0, avgIc = 0, avgDbi = 0, avgPic = 0, avgIS = 0, avgDiv = 0, 116 avgReg = 0, avgEnt = 0, avgPkIc = 0, avgPkDbi = 0; 117 int count = 0; 118 foreach (var t in trajectories) { 119 var trail = t.Select(x => x.Item2).ToArray(); 120 if (trail.Length < 4) continue; 121 count++; 122 double[] acf; 123 var len = RuggednessCalculator.CalculateCorrelationLength(trail, out acf); 124 avgAc1 += acf[0]; 125 avgCorLen += len; 126 var analysis = new InformationAnalysis(trail, 20, 2); 127 avgIc += analysis.InformationContent[0]; 128 avgDbi += analysis.DensityBasinInformation[0]; 129 avgPic += analysis.PartialInformationContent[0]; 130 avgIS += analysis.InformationStability; 131 avgDiv += analysis.Diversity; 132 avgReg += analysis.Regularity; 133 avgEnt += analysis.TotalEntropy[0]; 134 avgPkIc += analysis.PeakInformationContent.Value; 135 avgPkDbi += analysis.PeakDensityBasinInformation.Value; 136 } 137 avgAc1 /= count; 138 avgCorLen /= count; 139 avgIc /= count; 140 avgDbi /= count; 141 avgPic /= count; 142 avgIS /= count; 143 avgDiv /= count; 144 avgReg /= count; 145 avgEnt /= count; 146 avgPkIc /= count; 147 avgPkDbi /= count; 148 var isResults = new Dictionary<string, double>() { 149 { "AutoCorrelation1", avgAc1 }, 150 { "CorrelationLength", avgCorLen }, 151 { "InformationContent", avgIc }, 152 { "DensityBasinInformation", avgDbi }, 153 { "PartialInformationContent", avgPic }, 154 { "InformationStability", avgIS }, 155 { "Diversity", avgDiv }, 156 { "Regularity", avgReg }, 157 { "TotalEntropy", avgEnt }, 158 { "PeakInformationContent", avgPkIc }, 159 { "PeakDensityBasinInformation", avgPkDbi } 160 }; 161 #endregion 162 163 foreach (var chara in characteristics.CheckedItems.Select(x => x.Value.Value)) { 164 if (Enum.TryParse<CurveAnalysisFeature>(chara, out var caf)) 165 yield return new Result(Type.ToString() + "-DW." + NBHOOD_STR + "." + chara, new DoubleValue(result.GetValue(caf))); 166 else yield return new Result(Type.ToString() + "-DW." + NBHOOD_STR + "." + chara, new DoubleValue(isResults[chara])); 167 } 168 yield return new Result("EvaluatedSolutions", new IntValue((int)Math.Round(_evaluatedSolutions))); 169 } 170 171 private IEnumerable<Permutation> CalculateRelinkingPoints() { 98 172 IRandom random = Seed.HasValue ? new MersenneTwister((uint)Seed.Value) : new MersenneTwister(); 99 173 var qap = (QuadraticAssignmentProblem)Problem; 100 List<Permutation> permutations = CalculateRelinkingPoints(random, qap, Paths, LocalOptima); 101 102 var trajectories = Run(random, (QuadraticAssignmentProblem)Problem, permutations, BestImprovement).ToList(); 103 var result = PermutationPathAnalysis.GetCharacteristics(trajectories); 104 105 foreach (var chara in characteristics.CheckedItems.Select(x => x.Value.Value)) { 106 if (chara == "Swap2.Sharpness") yield return new Result("Swap2.Sharpness", new DoubleValue(result.Sharpness)); 107 if (chara == "Swap2.Bumpiness") yield return new Result("Swap2.Bumpiness", new DoubleValue(result.Bumpiness)); 108 if (chara == "Swap2.Flatness") yield return new Result("Swap2.Flatness", new DoubleValue(result.Flatness)); 109 } 110 } 111 112 public static List<Permutation> CalculateRelinkingPoints(IRandom random, QuadraticAssignmentProblem qap, int pathCount, bool localOptima) { 174 var pathCount = Paths; 175 113 176 var perm = new Permutation(PermutationTypes.Absolute, qap.Weights.Rows, random); 114 if (localOptima) { 115 var fit = new DoubleValue(QAPEvaluator.Apply(perm, qap.Weights, qap.Distances)); 116 QAPExhaustiveSwap2LocalImprovement.ImproveFast(perm, qap.Weights, qap.Distances, fit, new IntValue(0), new IntValue(0), qap.Maximization.Value, int.MaxValue, CancellationToken.None); 117 } 118 var permutations = new List<Permutation> { perm }; 119 while (permutations.Count < pathCount + 1) { 120 perm = (Permutation)permutations.Last().Clone(); 121 BiasedShuffle(perm, random); 122 if (localOptima) { 177 var startLocal = Type == WalkType.LocalGlobal || Type == WalkType.LocalLocal; 178 var targetLocal = Type == WalkType.LocalLocal || Type == WalkType.RandomLocal; 179 var targetGlobal = Type == WalkType.LocalGlobal || Type == WalkType.RandomGlobal; 180 var inverseWalk = Type == WalkType.LocalInverse; 181 182 if (Type == WalkType.LocalInverse) pathCount--; // inverse walks equal one walk per solution 183 for (var i = 0; i <= pathCount; i++) { 184 var start = i % 2 == 0; 185 var target = i % 2 == 1; 186 if (inverseWalk || start && startLocal) { 187 perm = new Permutation(PermutationTypes.Absolute, qap.Weights.Rows, random); 123 188 var fit = new DoubleValue(QAPEvaluator.Apply(perm, qap.Weights, qap.Distances)); 124 QAPExhaustiveSwap2LocalImprovement.ImproveFast(perm, qap.Weights, qap.Distances, fit, new IntValue(0), new IntValue(0), qap.Maximization.Value, int.MaxValue, CancellationToken.None); 189 _evaluatedSolutions++; 190 var evalSol = new IntValue(0); 191 QAPExhaustiveSwap2LocalImprovement.ImproveFast(perm, qap.Weights, qap.Distances, fit, new IntValue(0), evalSol, qap.Maximization.Value, int.MaxValue, CancellationToken.None); 192 _evaluatedSolutions += evalSol.Value; 193 } else if (target && (targetLocal || targetGlobal)) { 194 if (targetGlobal) { 195 perm = qap.BestKnownSolutions.SampleRandom(random); 196 } else { 197 perm = new Permutation(PermutationTypes.Absolute, qap.Weights.Rows, random); 198 var fit = new DoubleValue(QAPEvaluator.Apply(perm, qap.Weights, qap.Distances)); 199 _evaluatedSolutions++; 200 var evalSol = new IntValue(0); 201 QAPExhaustiveSwap2LocalImprovement.ImproveFast(perm, qap.Weights, qap.Distances, fit, new IntValue(0), evalSol, qap.Maximization.Value, int.MaxValue, CancellationToken.None); 202 _evaluatedSolutions += evalSol.Value; 203 } 204 } else { // random 205 BiasedShuffle(perm, random); 125 206 } 126 if (HammingSimilarityCalculator.CalculateSimilarity(permutations.Last(), perm) < 0.75) 127 permutations.Add(perm); 128 } 129 130 return permutations; 131 } 132 133 public static IEnumerable<List<Tuple<Permutation, double>>> Run(IRandom random, QuadraticAssignmentProblem qap, IEnumerable<Permutation> permutations, bool bestImprovement = true) { 207 yield return (Permutation)perm.Clone(); 208 } 209 } 210 211 private IEnumerable<List<Tuple<Permutation, double>>> Run(IEnumerable<Permutation> permutations) { 212 if (Type == WalkType.LocalInverse) return RunInverse(permutations); 213 return RunRegular(permutations); 214 } 215 216 private IEnumerable<List<Tuple<Permutation, double>>> RunInverse(IEnumerable<Permutation> permutations) { 217 var qap = (QuadraticAssignmentProblem)Problem; 218 var min = qap.LowerBound.Value; 219 var max = qap.AverageQuality.Value; 220 var bestImprovement = BestImprovement; 221 222 foreach (var start in permutations) { 223 var startFitness = QAPEvaluator.Apply(start, qap.Weights, qap.Distances); 224 _evaluatedSolutions++; 225 226 // inverse walks are applied to all solutions 227 Func<Tuple<Permutation, double>, IEnumerable<Tuple<Permutation, double>>> inverseNeighborFunc = (p) => RestrictedInverseNeighborhood(qap, p.Item1, p.Item2, start); 228 var walk = DirectedWalk<Permutation>.WalkRestricted(qap.Maximization.Value, inverseNeighborFunc, start, startFitness, !bestImprovement); 229 yield return walk.Select(x => Tuple.Create(x.Item1, (x.Item2 - min) / (max - min))).ToList(); 230 } // end paths 231 } 232 233 private IEnumerable<List<Tuple<Permutation, double>>> RunRegular(IEnumerable<Permutation> permutations) { 134 234 var iter = permutations.GetEnumerator(); 135 235 if (!iter.MoveNext()) yield break; 136 236 var bestImprovement = BestImprovement; 237 238 var qap = (QuadraticAssignmentProblem)Problem; 137 239 var min = qap.LowerBound.Value; 138 240 var max = qap.AverageQuality.Value; 139 241 140 242 var start = iter.Current; 243 141 244 while (iter.MoveNext()) { 245 var startFitness = QAPEvaluator.Apply(start, qap.Weights, qap.Distances); 246 _evaluatedSolutions++; 142 247 var end = iter.Current; 143 248 144 var walk = (bestImprovement ? BestDirectedWalk(qap, start, end) : FirstDirectedWalk(random, qap, start, end)).ToList(); 145 yield return walk.Select(x => Tuple.Create(x.Item1, (x.Item2 - min) / (max - min))).ToList(); 249 var invSol = new int[start.Length]; 250 Func<Tuple<Permutation, double>, IEnumerable<Tuple<Permutation, double>>> regularNeighborFunc = (p) => RestrictedNeighborhood(qap, p.Item1, p.Item2, end, invSol); 251 var walk = DirectedWalk<Permutation>.WalkRestricted(qap.Maximization.Value, regularNeighborFunc, start, startFitness, !bestImprovement); 252 253 var trail = new List<Tuple<Permutation, double>>(); 254 foreach (var step in walk) { 255 for (var i = 0; i < invSol.Length; i++) 256 invSol[step.Item1[i]] = i; 257 trail.Add(Tuple.Create(step.Item1, (step.Item2 - min) / (max - min))); 258 } 259 yield return trail; 260 146 261 start = end; 147 262 } // end paths 148 263 } 149 264 150 private static IEnumerable<Tuple<Permutation, double>> BestDirectedWalk(QuadraticAssignmentProblem qap, Permutation start, Permutation end) { 151 var N = qap.Weights.Rows; 152 var sol = start; 153 var fitness = QAPEvaluator.Apply(sol, qap.Weights, qap.Distances); 154 yield return Tuple.Create(sol, fitness); 155 156 var invSol = GetInverse(sol); 157 // we require at most N-1 steps to move from one permutation to another 158 for (var step = 0; step < N - 1; step++) { 159 var bestFitness = double.MaxValue; 160 var bestIndex = -1; 161 sol = (Permutation)sol.Clone(); 162 for (var index = 0; index < N; index++) { 163 if (sol[index] == end[index]) continue; 164 var fit = QAPSwap2MoveEvaluator.Apply(sol, new Swap2Move(index, invSol[end[index]]), qap.Weights, qap.Distances); 165 if (fit < bestFitness) { // QAP is minimization 166 bestFitness = fit; 167 bestIndex = index; 168 } 265 private IEnumerable<Tuple<Permutation, double>> RestrictedInverseNeighborhood(QuadraticAssignmentProblem qap, Permutation current, double currentFit, Permutation start) { 266 var evalSolPerMove = 4.0 / current.Length; 267 var N = current.Length; 268 for (var index = 0; index < N; index++) { 269 if (current[index] != start[index]) continue; 270 for (var k = 0; k < N; k++) { 271 if (k == index) continue; 272 var fit = QAPSwap2MoveEvaluator.Apply(current, new Swap2Move(index, k), qap.Weights, qap.Distances); 273 _evaluatedSolutions += evalSolPerMove; 274 current.Swap(index, k); 275 yield return Tuple.Create(current, currentFit + fit); 276 current.Swap(index, k); // reverse 169 277 } 170 if (bestIndex >= 0) { 171 var prev = sol[bestIndex]; 172 Swap2Manipulator.Apply(sol, bestIndex, invSol[end[bestIndex]]); 173 fitness += bestFitness; 174 yield return Tuple.Create(sol, fitness); 175 invSol[prev] = invSol[end[bestIndex]]; 176 invSol[sol[bestIndex]] = bestIndex; 177 } else break; 178 } 179 } 180 181 private static IEnumerable<Tuple<Permutation, double>> FirstDirectedWalk(IRandom random, QuadraticAssignmentProblem qap, Permutation start, Permutation end) { 182 var N = qap.Weights.Rows; 183 var sol = start; 184 var fitness = QAPEvaluator.Apply(sol, qap.Weights, qap.Distances); 185 yield return Tuple.Create(sol, fitness); 186 187 var invSol = GetInverse(sol); 188 // randomize the order in which improvements are tried 189 var order = Enumerable.Range(0, N).Shuffle(random).ToArray(); 190 // we require at most N-1 steps to move from one permutation to another 191 for (var step = 0; step < N - 1; step++) { 192 var bestFitness = double.MaxValue; 193 var bestIndex = -1; 194 sol = (Permutation)sol.Clone(); 195 for (var i = 0; i < N; i++) { 196 var index = order[i]; 197 if (sol[index] == end[index]) continue; 198 var fit = QAPSwap2MoveEvaluator.Apply(sol, new Swap2Move(index, invSol[end[index]]), qap.Weights, qap.Distances); 199 if (fit < bestFitness) { // QAP is minimization 200 bestFitness = fit; 201 bestIndex = index; 202 if (bestFitness < 0) break; 203 } 204 } 205 if (bestIndex >= 0) { 206 var prev = sol[bestIndex]; 207 Swap2Manipulator.Apply(sol, bestIndex, invSol[end[bestIndex]]); 208 fitness += bestFitness; 209 yield return Tuple.Create(sol, fitness); 210 invSol[prev] = invSol[end[bestIndex]]; 211 invSol[sol[bestIndex]] = bestIndex; 212 } else break; 213 } 214 } 215 216 private static int[] GetInverse(Permutation p) { 217 var inv = new int[p.Length]; 218 for (var i = 0; i < p.Length; i++) { 219 inv[p[i]] = i; 220 } 221 return inv; 278 } 279 } 280 281 private IEnumerable<Tuple<Permutation, double>> RestrictedNeighborhood(QuadraticAssignmentProblem qap, Permutation current, double currentFit, Permutation target, int[] inverse) { 282 var evalSolPerMove = 4.0 / current.Length; 283 for (var index = 0; index < current.Length; index++) { 284 if (current[index] == target[index]) continue; 285 var k = inverse[target[index]]; 286 var fit = QAPSwap2MoveEvaluator.Apply(current, new Swap2Move(index, k), qap.Weights, qap.Distances); 287 _evaluatedSolutions += evalSolPerMove; 288 current.Swap(index, k); 289 yield return Tuple.Create(current, currentFit + fit); 290 current.Swap(index, k); // reverse 291 } 222 292 } 223 293 -
branches/2457_ExpertSystem/HeuristicLab.Problems.Instances.QAPLIB/3.3/OneSizeInstanceProvider.cs
r15031 r16096 3 3 using System.Linq; 4 4 using System.Text.RegularExpressions; 5 using HeuristicLab.Common; 5 6 6 7 namespace HeuristicLab.Problems.Instances.QAPLIB { 8 public class OneSize10InstanceProvider : OneSizeInstanceProvider { 9 public OneSize10InstanceProvider() : base(10) { } 10 } 11 public class OneSize25InstanceProvider : OneSizeInstanceProvider { 12 public OneSize25InstanceProvider() : base(25) { } 13 } 14 public class OneSize50InstanceProvider : OneSizeInstanceProvider { 15 public OneSize50InstanceProvider() : base(50) { } 16 } 17 public class OneSize100InstanceProvider : OneSizeInstanceProvider { 18 public OneSize100InstanceProvider() : base(100) { } 19 } 20 7 21 public class OneSizeInstanceProvider : ProblemInstanceProvider<QAPData> { 22 public override string Name { get { return "One Size (n = " + Dimension + ")"; } } 23 public override string Description { get { return "Instances from various libraries reduced to a dimension of " + Dimension + "."; } } 24 public override Uri WebLink { get { return null; } } 25 public override string ReferencePublication { 26 get { 27 return 28 @"A. Beham, E. Pitzer, S. Wagner, M. Affenzeller. 2017. 29 Integrating Exploratory Landscape Analysis into Metaheuristic Algorithms. 30 Lecture Notes in Computer Science 10671, Las Palmas de Gran Canaria, Spanien, pp. 473-480"; 31 } 32 } 33 34 public int Dimension { get; private set; } 35 36 public OneSizeInstanceProvider(int dimension) { 37 Dimension = dimension; 38 } 39 8 40 public override IEnumerable<IDataDescriptor> GetDataDescriptors() { 9 41 var drezner = new DreznerQAPInstanceProvider(); 10 42 foreach (var desc in drezner.GetDataDescriptors()) { 11 43 var dim = int.Parse(Regex.Match(desc.Name, "dre(?<g>\\d+)").Groups["g"].Value); 12 if (dim < 25) continue;13 yield return new OneSizeDataDescriptor(desc.Name + (dim == 25 ? "" : "-25"), desc.Description, drezner, desc);44 if (dim < Dimension) continue; 45 yield return new OneSizeDataDescriptor(desc.Name + (dim == Dimension ? "" : "-" + Dimension), desc.Description, drezner, desc); 14 46 } 15 47 // Microarray instances are all greater than 25 dimensions 16 48 var microarray = new MicroarrayQAPInstanceProvider(); 17 49 foreach (var desc in microarray.GetDataDescriptors()) { 18 yield return new OneSizeDataDescriptor(desc.Name + "-25", desc.Description, microarray, desc); 50 var instance = microarray.LoadData(desc); 51 if (instance.Dimension < Dimension) continue; 52 yield return new OneSizeDataDescriptor(desc.Name + (instance.Dimension == Dimension ? "" : "-" + Dimension), desc.Description, microarray, desc); 19 53 } 20 54 var qaplib = new QAPLIBInstanceProvider(); 21 55 foreach (var desc in qaplib.GetDataDescriptors()) { 22 56 var instance = qaplib.LoadData(desc); 23 if (instance.Dimension < 25) continue;24 yield return new OneSizeDataDescriptor(desc.Name + (instance.Dimension == 25 ? "" : "-25"), desc.Description, qaplib, desc);57 if (instance.Dimension < Dimension) continue; 58 yield return new OneSizeDataDescriptor(desc.Name + (instance.Dimension == Dimension ? "" : "-" + Dimension), desc.Description, qaplib, desc); 25 59 } 26 60 // Taillard's instances are basically from the same distribution 27 61 // to avoid over-representation in the set only the tai27e are taken and reduced to 25 dimension 28 62 var taillard = new TaillardQAPInstanceProvider(); 29 foreach (var desc in taillard.GetDataDescriptors()) { 30 if (!desc.Name.StartsWith("tai27e")) continue; 31 yield return new OneSizeDataDescriptor(desc.Name + "-25", desc.Description, taillard, desc); 63 var count = 0; 64 foreach (var desc in taillard.GetDataDescriptors().OrderBy(x => x.Name, new NaturalStringComparer())) { 65 var dim = int.Parse(Regex.Match(desc.Name, "tai(?<g>\\d+)e").Groups["g"].Value); 66 if (dim < Dimension) continue; 67 yield return new OneSizeDataDescriptor(desc.Name + (dim == Dimension ? "" : "-" + Dimension), desc.Description, taillard, desc); 68 if (++count == 10) break; 32 69 } 33 70 } … … 36 73 var desc = (OneSizeDataDescriptor)descriptor; 37 74 var data = desc.ActualProvider.LoadData(desc.ActualDescriptor); 38 data.BestKnownAssignment = null; 39 data.BestKnownQuality = null; 40 if (data.Dimension <= 25) { 75 76 if (data.Dimension <= Dimension) { 41 77 return data; 42 78 } … … 46 82 Shuffle(tmp, rand); 47 83 var throwAway = new bool[data.Dimension]; 48 foreach (var t in tmp.Take(data.Dimension - 25))84 foreach (var t in tmp.Take(data.Dimension - Dimension)) 49 85 throwAway[t] = true; 50 86 51 var weights = new double[ 25, 25];52 var distances = new double[ 25, 25];87 var weights = new double[Dimension, Dimension]; 88 var distances = new double[Dimension, Dimension]; 53 89 var k = 0; 54 90 for (var i = 0; i < data.Dimension; i++) { … … 68 104 data.BestKnownAssignment = null; 69 105 data.BestKnownQuality = null; 70 data.Dimension = 25;71 data.Name += "- 25";72 data.Description += " (reduced to 25dimensions)";106 data.Dimension = Dimension; 107 data.Name += "-" + Dimension; 108 data.Description += " (reduced to " + Dimension + " dimensions)"; 73 109 74 110 return data; 75 111 } 76 77 public override string Name { get { return "One Size"; } }78 public override string Description { get { return string.Empty; } }79 public override Uri WebLink { get { return null; } }80 public override string ReferencePublication { get { return string.Empty; } }81 112 82 113 private static void Shuffle(int[] p, Random random) { -
branches/2457_ExpertSystem/ProblemInstanceIdentifier/InstanceDescriptor.cs
r15031 r16096 1 using System; 2 using System.Collections.Generic; 1 using System.Collections.Generic; 3 2 using System.Linq; 4 3 using System.Text.RegularExpressions; 5 using HeuristicLab.Analysis.FitnessLandscape;6 4 using HeuristicLab.Common; 7 using HeuristicLab.Encodings.PermutationEncoding;8 5 using HeuristicLab.Problems.QuadraticAssignment; 9 6 … … 16 13 public string[] FeatureNames { get; set; } 17 14 public double[] FeatureValues { get; set; } 15 16 public double DescriptionEffort { get; set; } 18 17 19 18 private InstanceDescriptor() { } … … 33 32 FeatureNames = (string[])other.FeatureNames.Clone(); 34 33 FeatureValues = (double[]) other.FeatureValues.Clone(); 34 DescriptionEffort = other.DescriptionEffort; 35 35 } 36 36 … … 41 41 Dimension = qap.Weights.Rows, 42 42 FeatureNames = new string[0], 43 FeatureValues = new double[0] 44 }; 45 } 46 47 public static InstanceDescriptor FromPaths(QuadraticAssignmentProblem qap, List<List<Tuple<Permutation, double>>> trajectories) { 48 var result = PermutationPathAnalysis.GetCharacteristics(trajectories); 49 50 return new InstanceDescriptor() { 51 Name = qap.Name, 52 Cls = GetClass(qap.Name), 53 Dimension = qap.Weights.Rows, 54 FeatureNames = result.GetNames(), 55 FeatureValues = result.GetValues() 43 FeatureValues = new double[0], 44 DescriptionEffort = 0 56 45 }; 57 46 } -
branches/2457_ExpertSystem/ProblemInstanceIdentifier/InstanceExplorer.cs
r15031 r16096 1 1 using System; 2 using System.Collections.Generic; 2 3 using System.Linq; 3 using HeuristicLab.Algorithms.MemPR.Permutation;4 4 using HeuristicLab.Analysis.FitnessLandscape; 5 5 using HeuristicLab.Data; 6 6 using HeuristicLab.Encodings.PermutationEncoding; 7 7 using HeuristicLab.Problems.QuadraticAssignment; 8 using HeuristicLab.Random;9 8 using HeuristicLab.SequentialEngine; 10 9 … … 21 20 public class PathRelinkingExplorer : InstanceExplorer { 22 21 public int Paths { get; set; } 23 public bool LocalOptima{ get; set; }22 public QAPDirectedWalk.WalkType Type { get; set; } 24 23 25 24 public override string Name { get { return "Path-Relinking Explorer"; } } 26 25 public override int Effort { get { return Paths; } } 27 26 27 public ISet<string> Features { get; set; } 28 28 29 public PathRelinkingExplorer() { 29 30 … … 31 32 32 33 public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) { 33 var walk= new QAPDirectedWalk {34 var calculator = new QAPDirectedWalk { 34 35 Problem = problem, 35 36 BestImprovement = true, 36 37 Paths = Paths, 37 38 Seed = seed, 38 LocalOptima = LocalOptima 39 }; 40 var features = walk.Calculate().ToDictionary(x => x.Name, x => x.Value); 41 42 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 43 features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 44 } 45 } 46 47 public class PathRelinkingOldFeaturedExplorer : InstanceExplorer { 48 public int Paths { get; set; } 49 public bool LocalOptima { get; set; } 50 51 public override string Name { get { return "Path-Relinking Explorer"; } } 52 public override int Effort { get { return Paths; } } 53 54 public PathRelinkingOldFeaturedExplorer() { 55 56 } 57 58 public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) { 59 var random = new MersenneTwister(); 60 var samples = QAPDirectedWalk.CalculateRelinkingPoints(random, problem, Paths, LocalOptima); 61 var trajectories = QAPDirectedWalk.Run(random, problem, samples); 62 63 double avgAc1 = 0, avgCorLen = 0, avgIc = 0, avgDbi = 0, avgPic = 0, avgIs = 0, avgDiv = 0, 64 avgReg = 0, avgEnt = 0, avgPkIc = 0, avgPkDbi = 0; 65 int count = 0; 66 foreach (var t in trajectories) { 67 var trail = t.Select(x => x.Item2).ToArray(); 68 if (trail.Length < 4) continue; 69 count++; 70 double[] acf; 71 var len = RuggednessCalculator.CalculateCorrelationLength(trail, out acf); 72 avgAc1 += acf[0]; 73 avgCorLen += len; 74 var analysis = new InformationAnalysis(trail, 20, 2); 75 avgIc += analysis.InformationContent[0]; 76 avgDbi += analysis.DensityBasinInformation[0]; 77 avgPic += analysis.PartialInformationContent[0]; 78 avgIs += analysis.InformationStability; 79 avgDiv += analysis.Diversity; 80 avgReg += analysis.Regularity; 81 avgEnt += analysis.TotalEntropy[0]; 82 avgPkIc += analysis.PeakInformationContent.Value; 83 avgPkDbi += analysis.PeakDensityBasinInformation.Value; 84 } 85 avgAc1 /= count; 86 avgCorLen /= count; 87 avgIc /= count; 88 avgDbi /= count; 89 avgPic /= count; 90 avgIs /= count; 91 avgDiv /= count; 92 avgReg /= count; 93 avgEnt /= count; 94 avgPkIc /= count; 95 avgPkDbi /= count; 96 97 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 98 new[] { "Autocorrelation(1)", "CorrelationLength", "InformationContent", "DensityBasinInformation", 99 "PartialInformationContent", "InformationStability", "Diversity", "Regularity", "TotalEntropy", 100 "PeakInformationContent", "PeakDensityBasinInformation" }, 101 new[] { avgAc1, avgCorLen, avgIc, avgDbi, 102 avgPic, avgIs, avgDiv, avgReg, avgEnt, 103 avgPkIc, avgPkDbi }); 104 } 105 } 106 39 Type = Type 40 }; 41 if (Features != null && Features.Count > 0) { 42 foreach (var c in calculator.Characteristics.ToList()) { 43 calculator.Characteristics.SetItemCheckedState(c, Features.Contains(c.Value)); 44 } 45 } 46 var result = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 47 var evaluations = ((IntValue)result["EvaluatedSolutions"]).Value; 48 result.Remove("EvaluatedSolutions"); 49 if (Features != null && result.Count != Features.Count) throw new InvalidOperationException("Not all features in results"); 50 51 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 52 result.Keys.ToArray(), result.Values.Select(x => ((DoubleValue)x).Value).ToArray()) { DescriptionEffort = evaluations }; 53 } 54 } 107 55 108 56 public class RandomWalkExplorer : InstanceExplorer { … … 111 59 public override string Name { get { return "Random-Walk Explorer"; } } 112 60 public override int Effort { get { return Iterations; } } 61 62 public ISet<string> Features { get; set; } 113 63 114 64 public RandomWalkExplorer() { … … 127 77 walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator); 128 78 var calculator = new RandomWalkCalculator(walk) { Problem = problem }; 129 var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 130 131 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 132 features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 79 foreach (var c in calculator.Characteristics.ToList()) { 80 calculator.Characteristics.SetItemCheckedState(c, Features.Contains(c.Value)); 81 } 82 var result = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 83 if (Features != null && result.Count != Features.Count) throw new InvalidOperationException("Not all features in results"); 84 85 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 86 result.Keys.ToArray(), result.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 133 87 } 134 88 } … … 139 93 140 94 public override string Name { get { return "Adaptive-Walk Explorer"; } } 141 public override int Effort { get { return Iterations * SampleSize; } } 95 private int _effort; 96 public override int Effort { get { return _effort; } } 97 98 public ISet<string> Features { get; set; } 142 99 143 100 public AdaptiveWalkExplorer() { 144 101 _effort = 0; 145 102 } 146 103 … … 157 114 walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator); 158 115 var calculator = new AdaptiveWalkCalculator(walk) { Problem = problem }; 159 var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 160 161 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 162 features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 116 foreach (var c in calculator.Characteristics.ToList()) { 117 calculator.Characteristics.SetItemCheckedState(c, Features.Contains(c.Value)); 118 } 119 var result = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 120 if (Features != null && result.Count != Features.Count) throw new InvalidOperationException("Not all features in results"); 121 122 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 123 result.Keys.ToArray(), result.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 163 124 } 164 125 } … … 170 131 public override string Name { get { return "Up/Down-Walk Explorer"; } } 171 132 public override int Effort { get { return Iterations * SampleSize; } } 133 134 public ISet<string> Features { get; set; } 172 135 173 136 public UpDownWalkExplorer() { … … 187 150 walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator); 188 151 var calculator = new UpDownWalkCalculator(walk) { Problem = problem }; 189 var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 190 191 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 192 features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 193 } 194 } 195 152 foreach (var c in calculator.Characteristics.ToList()) { 153 calculator.Characteristics.SetItemCheckedState(c, Features.Contains(c.Value)); 154 } 155 var result = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value); 156 if (Features != null && result.Count != Features.Count) throw new InvalidOperationException("Not all features in results"); 157 158 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, 159 result.Keys.ToArray(), result.Values.Select(x => ((DoubleValue)x).Value).ToArray()); 160 } 161 } 162 /* 196 163 public class MemPRExplorer : InstanceExplorer { 197 164 public int Seconds { get; set; } … … 230 197 return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, resultNames, result); 231 198 } 232 } 199 }*/ 233 200 } -
branches/2457_ExpertSystem/ProblemInstanceIdentifier/ProblemInstanceIdentifier.csproj
r15694 r16096 97 97 </ItemGroup> 98 98 <ItemGroup> 99 <ProjectReference Include="..\HeuristicLab.Algorithms.MemPR\3.3\HeuristicLab.Algorithms.MemPR-3.3.csproj">100 <Project>{9d274421-6332-4fbc-aae4-467ace27c368}</Project>101 <Name>HeuristicLab.Algorithms.MemPR-3.3</Name>102 </ProjectReference>103 99 <ProjectReference Include="..\HeuristicLab.Analysis.FitnessLandscape\3.3\HeuristicLab.Analysis.FitnessLandscape-3.3.csproj"> 104 100 <Project>{5fbdcd4a-3c2a-4ec6-83ce-34b29f43621a}</Project> -
branches/2457_ExpertSystem/ProblemInstanceIdentifier/Program.cs
r15031 r16096 2 2 using System.Collections.Generic; 3 3 using System.Globalization; 4 using System.IO; 4 5 using System.Linq; 5 6 using System.Threading.Tasks; 6 using HeuristicLab.PluginInfrastructure; 7 using HeuristicLab.Problems.Instances; 7 using HeuristicLab.Analysis.FitnessLandscape; 8 8 using HeuristicLab.Problems.Instances.QAPLIB; 9 9 using HeuristicLab.Problems.QuadraticAssignment; … … 13 13 class Program { 14 14 static void Main(string[] args) { 15 //var instances = Get20DifferentClasses();16 var instances = GetSomeRandomInstances(50, 13);17 15 18 16 /*var classes = instances.Select(InstanceDescriptor.FromProblemOnly).GroupBy(x => x.Cls); … … 21 19 }*/ 22 20 23 var prExplorer = new PathRelinkingExplorer() { 24 LocalOptima = false, 25 Paths = 200 26 }; 27 var prOldExplorer = new PathRelinkingOldFeaturedExplorer() { 28 LocalOptima = false, 29 Paths = 200 30 }; 31 32 var prLocalExplorer = new PathRelinkingExplorer() { 33 LocalOptima = true, 34 Paths = 200 35 }; 36 var prOldLocalExplorer = new PathRelinkingOldFeaturedExplorer() { 37 LocalOptima = true, 38 Paths = 200 39 }; 40 41 var memPrExplorer = new MemPRExplorer() { 42 IncludeLocalSearch = false, 43 Seconds = 10 44 }; 45 46 //var training = GenerateData(instances, prOldExplorer, parallel: true); 21 var dwFeatureSets = new Dictionary<string, HashSet<string>>() { 22 { "SBF", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness" } }, 23 { "FRQ", new HashSet<string>() { "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3" } }, 24 { "SBF+FRQ", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3" } }, 25 { "RUG", new HashSet<string>() { "AutoCorrelation1", "CorrelationLength" } }, 26 { "IAL", new HashSet<string>() { "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 27 { "RUG+IAL", new HashSet<string>() { "AutoCorrelation1", "CorrelationLength", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 28 { "SBF+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 29 { "FRQ+IAL", new HashSet<string>() { "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 30 { "SBF+FRQ+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 31 { "SBF+FRQ+RUG+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "AutoCorrelation1", "CorrelationLength", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } }, 32 }; 33 34 var dwTypes = new Dictionary<string, QAPDirectedWalk.WalkType> { 35 { "(rr)-dw", QAPDirectedWalk.WalkType.RandomRandom }, 36 { "(rl)-dw", QAPDirectedWalk.WalkType.RandomLocal }, 37 { "(ll)-dw", QAPDirectedWalk.WalkType.LocalLocal }, 38 { "(li)-dw", QAPDirectedWalk.WalkType.LocalInverse } 39 }; 40 41 var dwPaths = new List<int> { 1, 2, 5, 10, 20, 50, 100, 200, 500 }; 42 43 var random = new Random(); 44 using (var writer = File.CreateText("results.csv")) { 45 writer.AutoFlush = true; 46 var header = string.Format("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}\t{9}\t{10}\t{11}", 47 "Rep", "FSet", "Type", "TrainEff", "TestEff", "ExCnt", "ExRnk", "ClsCnt", "ClsRnk", "TotCnt", "TrainEff2", "TestEff2"); 48 writer.WriteLine(header); 49 Console.WriteLine(header); 50 foreach (var dim in new[] { 20, 30, 40, 50, 100 }) { 51 foreach (var feat in dwFeatureSets) { 52 foreach (var type in dwTypes) { 53 for (var rep = 0; rep < 10; rep++) { 54 var instances = GetSomeRandomInstances(dimension: dim, totalInstances: 20, seed: random.Next()); 55 56 var explorers = from p in dwPaths 57 select new PathRelinkingExplorer() { Features = feat.Value, Paths = p, Type = type.Value }; 58 ExploreMatching(writer, instances, explorers.ToArray(), explorers.ToArray(), string.Format("{0}\t{1}\t{2}", rep, feat.Key, type.Key)); 59 } 60 } 61 } 62 } 63 } 64 65 66 //var training = GenerateData(instances, rrDwExplorer, parallel: true); 47 67 //var standardizer = InstancesStandardizer.CreateAndApply(training); 48 //var test = GenerateData(instances, prOldExplorer, parallel: true);68 //var test = GenerateData(instances, rrDwExplorer, parallel: true); 49 69 //standardizer.Apply(test); 50 70 //PrintMatchResult(Compare(training, test)); … … 65 85 //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new AdaptiveWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(), 66 86 //parallel: true); 67 Console.WriteLine("=== Up/Down Walk ===");68 ExploreMatching(instances,69 new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),70 new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),71 parallel: true);72 } 73 74 private static List<QuadraticAssignmentProblem> GetSomeRandomInstances(int totalInstances, int seed) {87 //Console.WriteLine("=== Up/Down Walk ==="); 88 //ExploreMatching(instances, 89 //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(), 90 //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(), 91 //parallel: true); 92 } 93 94 private static List<QuadraticAssignmentProblem> GetSomeRandomInstances(int dimension, int totalInstances, int seed) { 75 95 var sync = new object(); 76 var provider = new OneSizeInstanceProvider( );96 var provider = new OneSizeInstanceProvider(dimension); 77 97 var instances = new List<QuadraticAssignmentProblem>(); 78 98 var random = new FastRandom(seed); … … 87 107 } 88 108 }); 89 return instances;90 }91 92 private static HashSet<string> selectedInstances = new HashSet<string>() {93 "bur26a", "chr25a", "dre24", "els19", "esc32a", "had20", "kra32", "lipa30a", "lipa30b",94 "nug30", "rou20", "scr20", "sko42", "ste36a", "tai25a", "tai25b", "tho30", "wil50",95 "RAND-S-6x6-36-25-AFFY-00_rand_rand_bl", "RAND-S-6x6-36-25-AFFY-00_rand_rand_ci"96 };97 private static List<QuadraticAssignmentProblem> Get20DifferentClasses() {98 var sync = new object();99 100 var qapProviders = ApplicationManager.Manager.GetInstances<ProblemInstanceProvider<QAPData>>().ToList();101 var instances = new List<QuadraticAssignmentProblem>();102 foreach (var provider in qapProviders) {103 if (provider is TaillardQAPInstanceProvider) continue;104 Parallel.ForEach(provider.GetDataDescriptors(), desc => {105 if (!selectedInstances.Contains(desc.Name)) return;106 //if (desc.Name == "esc16f") return;107 var qapData = provider.LoadData(desc);108 //if (qapData.Dimension < 15 || qapData.Dimension > 150) return;109 var qap = new QuadraticAssignmentProblem();110 qap.Load(qapData);111 lock (sync) {112 instances.Add(qap);113 }114 });115 }116 109 return instances; 117 110 } … … 155 148 TotalCount = totalCount, 156 149 ExactAverageRank = exactRank / (double)totalCount, 157 ClsAverageRank = clsRank / (double)totalCount 158 }; 159 } 160 161 private static void PrintMatchResult(MatchResult result) { 162 Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4:F2}", 163 result.ExactCount, result.ClsCount, result.TotalCount, 164 result.ExactAverageRank, result.ClsAverageRank); 150 ClsAverageRank = clsRank / (double)totalCount, 151 TrainingDescriptionEffort = training.Average(x => x.DescriptionEffort), 152 TestDescriptionEffort = test.Average(x => x.DescriptionEffort) 153 }; 165 154 } 166 155 … … 168 157 using (var iter = instances.GetEnumerator()) { 169 158 if (!iter.MoveNext()) return; 170 Console.WriteLine(string.Join(";", new[] {"Name", "Cls", "Dimension" }159 Console.WriteLine(string.Join(";", new[] {"Name", "Cls", "Dimension", "Effort"} 171 160 .Concat(iter.Current != null ? iter.Current.FeatureNames : new [] { "(null)" }))); 172 161 do { … … 178 167 private static void PrintInstanceLine(InstanceDescriptor instance) { 179 168 Console.WriteLine(string.Join(";", 180 new[] {instance.Name, instance.Cls, instance.Dimension.ToString(CultureInfo.CurrentCulture) }169 new[] {instance.Name, instance.Cls, instance.Dimension.ToString(CultureInfo.CurrentCulture), instance.DescriptionEffort.ToString(CultureInfo.CurrentCulture)} 181 170 .Concat(instance.FeatureValues.Select(x => x.ToString(CultureInfo.CurrentCulture))))); 182 171 } 183 172 184 private static void ExploreMatching( List<QuadraticAssignmentProblem> instances, InstanceExplorer[] trainingExplorers, InstanceExplorer[] testExporers, bool parallel = false) {173 private static void ExploreMatching(StreamWriter writer, List<QuadraticAssignmentProblem> instances, InstanceExplorer[] trainingExplorers, InstanceExplorer[] testExporers, string info, bool parallel = false) { 185 174 var sync = new object(); 186 175 … … 223 212 var result = Compare(point.Training.Value.Item2, normalizedTest); 224 213 lock (sync) { 225 Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}", 226 point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount, 227 result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount); 214 string output = string.Format("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}\t{7}\t{8}\t{9}", 215 info, point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount, 216 result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount, 217 result.TrainingDescriptionEffort, result.TestDescriptionEffort); 218 writer.WriteLine(output); 219 Console.WriteLine(output); 228 220 } 229 221 }); … … 233 225 point.Training.Value.Item1.Apply(normalizedTest); 234 226 var result = Compare(point.Training.Value.Item2, normalizedTest); 235 Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}", 236 point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount, 237 result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount); 227 string output = string.Format("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}\t{7}\t{8}\t{9}", 228 info, point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount, 229 result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount, 230 result.TrainingDescriptionEffort, result.TestDescriptionEffort); 231 writer.WriteLine(output); 232 Console.WriteLine(output); 238 233 } 239 234 } … … 246 241 public double ExactAverageRank { get; set; } 247 242 public double ClsAverageRank { get; set; } 243 244 public double TrainingDescriptionEffort { get; set; } 245 public double TestDescriptionEffort { get; set; } 248 246 } 249 247 }
Note: See TracChangeset
for help on using the changeset viewer.