1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using HeuristicLab.Algorithms.MemPR.Permutation;
|
---|
4 | using HeuristicLab.Analysis.FitnessLandscape;
|
---|
5 | using HeuristicLab.Data;
|
---|
6 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
7 | using HeuristicLab.Problems.QuadraticAssignment;
|
---|
8 | using HeuristicLab.Random;
|
---|
9 | using HeuristicLab.SequentialEngine;
|
---|
10 |
|
---|
11 | namespace ProblemInstanceIdentifier {
|
---|
12 | public abstract class InstanceExplorer {
|
---|
13 |
|
---|
14 | public abstract string Name { get; }
|
---|
15 | public abstract int Effort { get; }
|
---|
16 | protected InstanceExplorer() { }
|
---|
17 |
|
---|
18 | public abstract InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null);
|
---|
19 | }
|
---|
20 |
|
---|
21 | public class PathRelinkingExplorer : InstanceExplorer {
|
---|
22 | public int Paths { get; set; }
|
---|
23 | public bool LocalOptima { get; set; }
|
---|
24 |
|
---|
25 | public override string Name { get { return "Path-Relinking Explorer"; } }
|
---|
26 | public override int Effort { get { return Paths; } }
|
---|
27 |
|
---|
28 | public PathRelinkingExplorer() {
|
---|
29 |
|
---|
30 | }
|
---|
31 |
|
---|
32 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
33 | var walk = new QAPDirectedWalk {
|
---|
34 | Problem = problem,
|
---|
35 | BestImprovement = true,
|
---|
36 | Paths = Paths,
|
---|
37 | Seed = seed,
|
---|
38 | LocalOptima = LocalOptima
|
---|
39 | };
|
---|
40 | var features = walk.Calculate().ToDictionary(x => x.Name, x => x.Value);
|
---|
41 |
|
---|
42 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows,
|
---|
43 | features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray());
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public class PathRelinkingOldFeaturedExplorer : InstanceExplorer {
|
---|
48 | public int Paths { get; set; }
|
---|
49 | public bool LocalOptima { get; set; }
|
---|
50 |
|
---|
51 | public override string Name { get { return "Path-Relinking Explorer"; } }
|
---|
52 | public override int Effort { get { return Paths; } }
|
---|
53 |
|
---|
54 | public PathRelinkingOldFeaturedExplorer() {
|
---|
55 |
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
59 | var random = new MersenneTwister();
|
---|
60 | var samples = QAPDirectedWalk.CalculateRelinkingPoints(random, problem, Paths, LocalOptima);
|
---|
61 | var trajectories = QAPDirectedWalk.Run(random, problem, samples);
|
---|
62 |
|
---|
63 | double avgAc1 = 0, avgCorLen = 0, avgIc = 0, avgDbi = 0, avgPic = 0, avgIs = 0, avgDiv = 0,
|
---|
64 | avgReg = 0, avgEnt = 0, avgPkIc = 0, avgPkDbi = 0;
|
---|
65 | int count = 0;
|
---|
66 | foreach (var t in trajectories) {
|
---|
67 | var trail = t.Select(x => x.Item2).ToArray();
|
---|
68 | if (trail.Length < 4) continue;
|
---|
69 | count++;
|
---|
70 | double[] acf;
|
---|
71 | var len = RuggednessCalculator.CalculateCorrelationLength(trail, out acf);
|
---|
72 | avgAc1 += acf[0];
|
---|
73 | avgCorLen += len;
|
---|
74 | var analysis = new InformationAnalysis(trail, 20, 2);
|
---|
75 | avgIc += analysis.InformationContent[0];
|
---|
76 | avgDbi += analysis.DensityBasinInformation[0];
|
---|
77 | avgPic += analysis.PartialInformationContent[0];
|
---|
78 | avgIs += analysis.InformationStability;
|
---|
79 | avgDiv += analysis.Diversity;
|
---|
80 | avgReg += analysis.Regularity;
|
---|
81 | avgEnt += analysis.TotalEntropy[0];
|
---|
82 | avgPkIc += analysis.PeakInformationContent.Value;
|
---|
83 | avgPkDbi += analysis.PeakDensityBasinInformation.Value;
|
---|
84 | }
|
---|
85 | avgAc1 /= count;
|
---|
86 | avgCorLen /= count;
|
---|
87 | avgIc /= count;
|
---|
88 | avgDbi /= count;
|
---|
89 | avgPic /= count;
|
---|
90 | avgIs /= count;
|
---|
91 | avgDiv /= count;
|
---|
92 | avgReg /= count;
|
---|
93 | avgEnt /= count;
|
---|
94 | avgPkIc /= count;
|
---|
95 | avgPkDbi /= count;
|
---|
96 |
|
---|
97 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows,
|
---|
98 | new[] { "Autocorrelation(1)", "CorrelationLength", "InformationContent", "DensityBasinInformation",
|
---|
99 | "PartialInformationContent", "InformationStability", "Diversity", "Regularity", "TotalEntropy",
|
---|
100 | "PeakInformationContent", "PeakDensityBasinInformation" },
|
---|
101 | new[] { avgAc1, avgCorLen, avgIc, avgDbi,
|
---|
102 | avgPic, avgIs, avgDiv, avgReg, avgEnt,
|
---|
103 | avgPkIc, avgPkDbi });
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 | public class RandomWalkExplorer : InstanceExplorer {
|
---|
109 | public int Iterations { get; set; }
|
---|
110 |
|
---|
111 | public override string Name { get { return "Random-Walk Explorer"; } }
|
---|
112 | public override int Effort { get { return Iterations; } }
|
---|
113 |
|
---|
114 | public RandomWalkExplorer() {
|
---|
115 |
|
---|
116 | }
|
---|
117 |
|
---|
118 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
119 | var walk = new RandomWalk() {
|
---|
120 | SeedParameter = { Value = { Value = seed ?? 0 } },
|
---|
121 | SetSeedRandomlyParameter = { Value = { Value = !seed.HasValue } },
|
---|
122 | MaximumIterationsParameter = { Value = { Value = Iterations } },
|
---|
123 | RepetitionsParameter = { Value = { Value = 1 } }
|
---|
124 | };
|
---|
125 | walk.Problem = problem;
|
---|
126 | walk.Engine = new SequentialEngine();
|
---|
127 | walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator);
|
---|
128 | var calculator = new RandomWalkCalculator(walk) { Problem = problem };
|
---|
129 | var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value);
|
---|
130 |
|
---|
131 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows,
|
---|
132 | features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray());
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | public class AdaptiveWalkExplorer : InstanceExplorer {
|
---|
137 | public int Iterations { get; set; }
|
---|
138 | public int SampleSize { get; set; }
|
---|
139 |
|
---|
140 | public override string Name { get { return "Adaptive-Walk Explorer"; } }
|
---|
141 | public override int Effort { get { return Iterations * SampleSize; } }
|
---|
142 |
|
---|
143 | public AdaptiveWalkExplorer() {
|
---|
144 |
|
---|
145 | }
|
---|
146 |
|
---|
147 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
148 | var walk = new AdaptiveWalk() {
|
---|
149 | SeedParameter = { Value = { Value = seed ?? 0 } },
|
---|
150 | SetSeedRandomlyParameter = { Value = { Value = !seed.HasValue } },
|
---|
151 | MaximumIterationsParameter = { Value = { Value = Iterations } },
|
---|
152 | RepetitionsParameter = { Value = { Value = 1 } },
|
---|
153 | SampleSizeParameter = { Value = { Value = SampleSize } }
|
---|
154 | };
|
---|
155 | walk.Problem = problem;
|
---|
156 | walk.Engine = new SequentialEngine();
|
---|
157 | walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator);
|
---|
158 | var calculator = new AdaptiveWalkCalculator(walk) { Problem = problem };
|
---|
159 | var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value);
|
---|
160 |
|
---|
161 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows,
|
---|
162 | features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray());
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | public class UpDownWalkExplorer : InstanceExplorer {
|
---|
167 | public int Iterations { get; set; }
|
---|
168 | public int SampleSize { get; set; }
|
---|
169 |
|
---|
170 | public override string Name { get { return "Up/Down-Walk Explorer"; } }
|
---|
171 | public override int Effort { get { return Iterations * SampleSize; } }
|
---|
172 |
|
---|
173 | public UpDownWalkExplorer() {
|
---|
174 |
|
---|
175 | }
|
---|
176 |
|
---|
177 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
178 | var walk = new UpDownWalk() {
|
---|
179 | SeedParameter = { Value = { Value = seed ?? 0 } },
|
---|
180 | SetSeedRandomlyParameter = { Value = { Value = !seed.HasValue } },
|
---|
181 | MaximumIterationsParameter = { Value = { Value = Iterations } },
|
---|
182 | RepetitionsParameter = { Value = { Value = 1 } },
|
---|
183 | SampleSizeParameter = { Value = { Value = SampleSize } }
|
---|
184 | };
|
---|
185 | walk.Problem = problem;
|
---|
186 | walk.Engine = new SequentialEngine();
|
---|
187 | walk.MutatorParameter.Value = walk.MutatorParameter.ValidValues.First(x => x is Swap2Manipulator);
|
---|
188 | var calculator = new UpDownWalkCalculator(walk) { Problem = problem };
|
---|
189 | var features = calculator.Calculate().ToDictionary(x => x.Name, x => x.Value);
|
---|
190 |
|
---|
191 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows,
|
---|
192 | features.Keys.ToArray(), features.Values.Select(x => ((DoubleValue)x).Value).ToArray());
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 | public class MemPRExplorer : InstanceExplorer {
|
---|
197 | public int Seconds { get; set; }
|
---|
198 |
|
---|
199 | public bool IncludeLocalSearch { get; set; }
|
---|
200 |
|
---|
201 | public override string Name { get { return "MemPR Explorer"; } }
|
---|
202 | public override int Effort { get { return Seconds; } }
|
---|
203 |
|
---|
204 | public MemPRExplorer() {
|
---|
205 |
|
---|
206 | }
|
---|
207 |
|
---|
208 | public override InstanceDescriptor Explore(QuadraticAssignmentProblem problem, int? seed = null) {
|
---|
209 | var memPr = new PermutationMemPR();
|
---|
210 | memPr.Problem = problem;
|
---|
211 | memPr.Prepare(true);
|
---|
212 | memPr.MaximumExecutionTime = TimeSpan.FromSeconds(Seconds);
|
---|
213 | memPr.SetSeedRandomly = !seed.HasValue;
|
---|
214 | memPr.Seed = seed ?? 0;
|
---|
215 | memPr.StartSync();
|
---|
216 | if (memPr.Context.RelinkedPaths.IsEmpty
|
---|
217 | || IncludeLocalSearch && memPr.Context.LocalSearchPaths.IsEmpty) {
|
---|
218 | Console.WriteLine("{0} not all paths present!", problem.Name);
|
---|
219 | return null;
|
---|
220 | };
|
---|
221 |
|
---|
222 | var features = PermutationPathAnalysis.GetCharacteristics(memPr.Context.RelinkedPaths.Paths.ToList());
|
---|
223 | var result = features.GetValues();
|
---|
224 | var resultNames = features.GetNames();
|
---|
225 | if (IncludeLocalSearch) {
|
---|
226 | features = PermutationPathAnalysis.GetCharacteristics(memPr.Context.LocalSearchPaths.Paths.ToList());
|
---|
227 | result = result.Concat(features.GetValues()).ToArray();
|
---|
228 | resultNames = resultNames.Concat(features.GetNames()).ToArray();
|
---|
229 | }
|
---|
230 | return new InstanceDescriptor(problem.Name, InstanceDescriptor.GetClass(problem.Name), problem.Weights.Rows, resultNames, result);
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|