Changeset 15216
- Timestamp:
- 07/12/17 19:49:03 (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/Async/HeuristicLab.Algorithms.DataAnalysis/3.4/CrossValidation.cs
r15212 r15216 281 281 } 282 282 283 if ((ExecutionState != ExecutionState.Prepared) && (ExecutionState != ExecutionState.Paused)) 284 throw new InvalidOperationException(string.Format("Start not allowed in execution state \"{0}\".", ExecutionState)); 285 286 if (Algorithm == null) return; 287 //create cloned algorithms 288 if (clonedAlgorithms.Count == 0) { 289 int testSamplesCount = (SamplesEnd.Value - SamplesStart.Value) / Folds.Value; 290 291 for (int i = 0; i < Folds.Value; i++) { 292 IAlgorithm clonedAlgorithm = (IAlgorithm)algorithm.Clone(); 293 clonedAlgorithm.Name = algorithm.Name + " Fold " + i; 294 IDataAnalysisProblem problem = clonedAlgorithm.Problem as IDataAnalysisProblem; 295 ISymbolicDataAnalysisProblem symbolicProblem = problem as ISymbolicDataAnalysisProblem; 296 297 int testStart = (i * testSamplesCount) + SamplesStart.Value; 298 int testEnd = (i + 1) == Folds.Value ? SamplesEnd.Value : (i + 1) * testSamplesCount + SamplesStart.Value; 299 300 problem.ProblemData.TrainingPartition.Start = SamplesStart.Value; 301 problem.ProblemData.TrainingPartition.End = SamplesEnd.Value; 302 problem.ProblemData.TestPartition.Start = testStart; 303 problem.ProblemData.TestPartition.End = testEnd; 304 DataAnalysisProblemData problemData = problem.ProblemData as DataAnalysisProblemData; 305 if (problemData != null) { 306 problemData.TrainingPartitionParameter.Hidden = false; 307 problemData.TestPartitionParameter.Hidden = false; 283 try { 284 if ((ExecutionState != ExecutionState.Prepared) && (ExecutionState != ExecutionState.Paused)) 285 throw new InvalidOperationException(string.Format("Start not allowed in execution state \"{0}\".", ExecutionState)); 286 287 if (Algorithm == null) return; 288 //create cloned algorithms 289 if (clonedAlgorithms.Count == 0) { 290 int testSamplesCount = (SamplesEnd.Value - SamplesStart.Value) / Folds.Value; 291 292 for (int i = 0; i < Folds.Value; i++) { 293 IAlgorithm clonedAlgorithm = (IAlgorithm)algorithm.Clone(); 294 clonedAlgorithm.Name = algorithm.Name + " Fold " + i; 295 IDataAnalysisProblem problem = clonedAlgorithm.Problem as IDataAnalysisProblem; 296 ISymbolicDataAnalysisProblem symbolicProblem = problem as ISymbolicDataAnalysisProblem; 297 298 int testStart = (i * testSamplesCount) + SamplesStart.Value; 299 int testEnd = (i + 1) == Folds.Value ? SamplesEnd.Value : (i + 1) * testSamplesCount + SamplesStart.Value; 300 301 problem.ProblemData.TrainingPartition.Start = SamplesStart.Value; 302 problem.ProblemData.TrainingPartition.End = SamplesEnd.Value; 303 problem.ProblemData.TestPartition.Start = testStart; 304 problem.ProblemData.TestPartition.End = testEnd; 305 DataAnalysisProblemData problemData = problem.ProblemData as DataAnalysisProblemData; 306 if (problemData != null) { 307 problemData.TrainingPartitionParameter.Hidden = false; 308 problemData.TestPartitionParameter.Hidden = false; 309 } 310 311 if (symbolicProblem != null) { 312 symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value; 313 symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value; 314 } 315 clonedAlgorithm.Prepare(); 316 clonedAlgorithms.Add(clonedAlgorithm); 308 317 } 309 310 if (symbolicProblem != null) { 311 symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value; 312 symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value; 313 } 314 clonedAlgorithm.Prepare(); 315 clonedAlgorithms.Add(clonedAlgorithm); 316 } 317 } 318 319 OnStarted(); 318 } 319 320 OnStarted(); 321 } finally { 322 if (startPending) startPending = false; 323 } 324 320 325 availableWorkers = new SemaphoreSlim(NumberOfWorkers.Value, NumberOfWorkers.Value); 321 326 allAlgorithmsFinished = new ManualResetEventSlim(false);
Note: See TracChangeset
for help on using the changeset viewer.