Changeset 15181
- Timestamp:
- 07/10/17 17:26:43 (7 years ago)
- Location:
- trunk/sources
- Files:
-
- 12 edited
- 2 copied
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/AdaptiveRandomTopologyUpdater.cs
r15167 r15181 31 31 32 32 namespace HeuristicLab.Algorithms.ParticleSwarmOptimization { 33 [Item(" Multi PSO Topology Updater", "Splits swarm into NrOfSwarms non-overlapping sub-swarms. Swarms are re-grouped every regroupingPeriod iteration. The operator is implemented as described in Liang, J.J. and Suganthan, P.N 2005. Dynamic multi-swarm particle swarm optimizer. IEEE Swarm Intelligence Symposium, pp. 124-129.")]33 [Item("SPSO Adaptive Random Topology Updater", "Each unsuccessful iteration the topology initializer is applied again.")] 34 34 [StorableClass] 35 public sealed class MultiPSOTopologyUpdater : SingleSuccessorOperator, ITopologyUpdater {35 public sealed class SPSOAdaptiveRandomTopologyUpdater : SingleSuccessorOperator, ITopologyUpdater, ISingleObjectiveOperator { 36 36 37 37 public override bool CanChangeName { … … 40 40 41 41 #region Parameters 42 public ILookupParameter< IRandom> RandomParameter {43 get { return (ILookupParameter< IRandom>)Parameters["Random"]; }42 public ILookupParameter<BoolValue> MaximizationParameter { 43 get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; } 44 44 } 45 public I ValueLookupParameter<IntValue> NrOfSwarmsParameter {46 get { return (I ValueLookupParameter<IntValue>)Parameters["NrOfSwarms"]; }45 public ILookupParameter<DoubleValue> SwarmBestQualityParameter { 46 get { return (ILookupParameter<DoubleValue>)Parameters["SwarmBestQuality"]; } 47 47 } 48 public ILookupParameter<IntValue> SwarmSizeParameter { 49 get { return (ILookupParameter<IntValue>)Parameters["SwarmSize"]; } 48 public ILookupParameter<DoubleValue> PreviousBestQualityParameter { 49 get { return (ILookupParameter<DoubleValue>)Parameters["PreviousBestQuality"]; } 50 } 51 public ILookupParameter<ITopologyInitializer> TopologyInitializerParameter { 52 get { return (ILookupParameter<ITopologyInitializer>)Parameters["TopologyInitializer"]; } 50 53 } 51 54 public IScopeTreeLookupParameter<IntArray> NeighborsParameter { 52 55 get { return (IScopeTreeLookupParameter<IntArray>)Parameters["Neighbors"]; } 53 }54 public ILookupParameter<IntValue> CurrentIterationParameter {55 get { return (ILookupParameter<IntValue>)Parameters["CurrentIteration"]; }56 }57 public IValueLookupParameter<IntValue> RegroupingPeriodParameter {58 get { return (IValueLookupParameter<IntValue>)Parameters["RegroupingPeriod"]; }59 }60 #endregion61 62 #region Parameter Values63 private IRandom Random {64 get { return RandomParameter.ActualValue; }65 }66 private int NrOfSwarms {67 get { return NrOfSwarmsParameter.ActualValue.Value; }68 }69 private int SwarmSize {70 get { return SwarmSizeParameter.ActualValue.Value; }71 }72 private ItemArray<IntArray> Neighbors {73 get { return NeighborsParameter.ActualValue; }74 set { NeighborsParameter.ActualValue = value; }75 }76 private int CurrentIteration {77 get { return CurrentIterationParameter.ActualValue.Value; }78 }79 private int RegroupingPeriod {80 get { return RegroupingPeriodParameter.ActualValue.Value; }81 56 } 82 57 #endregion … … 84 59 #region Construction & Cloning 85 60 [StorableConstructor] 86 private MultiPSOTopologyUpdater(bool deserializing) : base(deserializing) { }87 private MultiPSOTopologyUpdater(MultiPSOTopologyUpdater original, Cloner cloner) : base(original, cloner) { }88 public MultiPSOTopologyUpdater()61 private SPSOAdaptiveRandomTopologyUpdater(bool deserializing) : base(deserializing) { } 62 private SPSOAdaptiveRandomTopologyUpdater(SPSOAdaptiveRandomTopologyUpdater original, Cloner cloner) : base(original, cloner) { } 63 public SPSOAdaptiveRandomTopologyUpdater() 89 64 : base() { 90 Parameters.Add(new LookupParameter<IRandom>("Random", "A random number generator.")); 91 Parameters.Add(new ValueLookupParameter<IntValue>("NrOfSwarms", "Nr of connected sub-swarms.", new IntValue(3))); 92 Parameters.Add(new LookupParameter<IntValue>("SwarmSize", "Number of particles in the swarm.")); 65 Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Whether the problem is to be maximized or not.")); 66 Parameters.Add(new LookupParameter<DoubleValue>("SwarmBestQuality", "The swarm's best quality.")); 67 Parameters.Add(new LookupParameter<DoubleValue>("PreviousBestQuality", "The best quality of the previous iteration.")); 68 Parameters.Add(new LookupParameter<ITopologyInitializer>("TopologyInitializer", "The topology initializer is called again in case no improvement is made.")); 93 69 Parameters.Add(new ScopeTreeLookupParameter<IntArray>("Neighbors", "The list of neighbors for each particle.")); 94 Parameters.Add(new LookupParameter<IntValue>("CurrentIteration", "The current iteration of the algorithm."));95 Parameters.Add(new ValueLookupParameter<IntValue>("RegroupingPeriod", "Update interval (=iterations) for regrouping of neighborhoods.", new IntValue(5)));96 70 } 97 71 public override IDeepCloneable Clone(Cloner cloner) { 98 return new MultiPSOTopologyUpdater(this, cloner);72 return new SPSOAdaptiveRandomTopologyUpdater(this, cloner); 99 73 } 100 74 #endregion 101 75 102 76 public override IOperation Apply() { 103 if (CurrentIteration > 0 && CurrentIteration % RegroupingPeriod == 0) {104 ItemArray<IntArray> neighbors = new ItemArray<IntArray>(SwarmSize);77 var swarmBest = SwarmBestQualityParameter.ActualValue; 78 if (swarmBest == null) return base.Apply(); 105 79 106 var particles = Enumerable.Range(0, SwarmSize).ToList(); 107 for (int i = SwarmSize-1; i>0; i--) { 108 int j = Random.Next(i+1); 109 int t = particles[j]; 110 particles[j] = particles[i]; 111 particles[i] = t; 112 } 80 var previousBest = PreviousBestQualityParameter.ActualValue; 81 if (previousBest == null) { 82 PreviousBestQualityParameter.ActualValue = new DoubleValue(swarmBest.Value); 83 return base.Apply(); 84 }; 113 85 114 for (int partitionNr = 0; partitionNr<NrOfSwarms; partitionNr++) { 115 int start = partitionNr*SwarmSize/NrOfSwarms; 116 int end = (partitionNr+1)*SwarmSize/NrOfSwarms; 117 for (int i = start; i<end; i++) 118 neighbors[particles[i]] = GetSegment(particles, start, end, i); 119 } 86 var successor = new OperationCollection(new[] { base.Apply() }); 87 var max = MaximizationParameter.ActualValue.Value; 88 if (max && swarmBest.Value >= previousBest.Value 89 || !max && swarmBest.Value <= previousBest.Value) 90 successor.Insert(0, ExecutionContext.CreateOperation(TopologyInitializerParameter.ActualValue)); 120 91 121 Neighbors = neighbors; 122 } 123 return base.Apply(); 124 } 125 126 public static IntArray GetSegment(IEnumerable<int> list, int start, int end, int excludedIndex) { 127 return new IntArray(list 128 .Skip(start) 129 .Take(end-start) 130 .Where((p, j) => start+j != excludedIndex) 131 .ToArray()); 92 previousBest.Value = swarmBest.Value; 93 return successor; 132 94 } 133 95 } -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/HeuristicLab.Algorithms.ParticleSwarmOptimization-3.3.csproj
r11623 r15181 113 113 </ItemGroup> 114 114 <ItemGroup> 115 <Compile Include="AdaptiveRandomTopologyUpdater.cs" /> 115 116 <Compile Include="MultiPSOTopologyUpdater.cs" /> 116 117 <Compile Include="ParticleSwarmOptimizationMainLoop.cs" /> 117 118 <Compile Include="Plugin.cs" /> 119 <Compile Include="SPSORandomTopologyInitializer.cs" /> 118 120 <Compile Include="RandomTopologyInitializer.cs" /> 119 121 <Compile Include="VonNeumannTopologyInitializer.cs" /> -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/MultiPSOTopologyUpdater.cs
r14185 r15181 33 33 [Item("Multi PSO Topology Updater", "Splits swarm into NrOfSwarms non-overlapping sub-swarms. Swarms are re-grouped every regroupingPeriod iteration. The operator is implemented as described in Liang, J.J. and Suganthan, P.N 2005. Dynamic multi-swarm particle swarm optimizer. IEEE Swarm Intelligence Symposium, pp. 124-129.")] 34 34 [StorableClass] 35 public sealed class MultiPSOTopologyUpdater : SingleSuccessorOperator, ITopologyUpdater {35 public sealed class MultiPSOTopologyUpdater : SingleSuccessorOperator, ITopologyUpdater, IStochasticOperator { 36 36 37 37 public override bool CanChangeName { -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/ParticleSwarmOptimization.cs
r15102 r15181 177 177 Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); 178 178 Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); 179 Parameters.Add(new ValueParameter<IntValue>("SwarmSize", "Size of the particle swarm.", new IntValue( 20)));179 Parameters.Add(new ValueParameter<IntValue>("SwarmSize", "Size of the particle swarm.", new IntValue(40))); 180 180 Parameters.Add(new ValueParameter<IntValue>("MaxIterations", "Maximal number of iterations.", new IntValue(1000))); 181 181 Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer())); 182 Parameters.Add(new ValueParameter<DoubleValue>("Inertia", "Inertia weight on a particle's movement (omega).", new DoubleValue(0. 8)));182 Parameters.Add(new ValueParameter<DoubleValue>("Inertia", "Inertia weight on a particle's movement (omega).", new DoubleValue(0.721))); 183 183 Parameters.Add(new ValueParameter<DoubleValue>("PersonalBestAttraction", "Weight for particle's pull towards its personal best soution (phi_p).", new DoubleValue(1))); 184 184 Parameters.Add(new ValueParameter<DoubleValue>("NeighborBestAttraction", "Weight for pull towards the neighborhood best solution or global best solution in case of a totally connected topology (phi_g).", new DoubleValue(1))); -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/ParticleSwarmOptimizationMainLoop.cs
r14185 r15181 122 122 Placeholder evaluatorPlaceholder = new Placeholder(); 123 123 Placeholder analyzerPlaceholder = new Placeholder(); 124 Placeholder analyzer2Placeholder = new Placeholder(); 124 125 UniformSubScopesProcessor uniformSubScopeProcessor = new UniformSubScopesProcessor(); 125 126 Placeholder particleUpdaterPlaceholder = new Placeholder(); … … 192 193 conditionalBranch.ConditionParameter.ActualName = "ContinueIteration"; 193 194 conditionalBranch.TrueBranch = analyzerPlaceholder; 195 conditionalBranch.FalseBranch = analyzer2Placeholder; 196 197 analyzer2Placeholder.Name = "(Analyzer)"; 198 analyzer2Placeholder.OperatorParameter.ActualName = AnalyzerParameter.Name; 194 199 #endregion 195 200 } -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/RandomTopologyInitializer.cs
r15091 r15181 30 30 31 31 namespace HeuristicLab.Algorithms.ParticleSwarmOptimization { 32 [Item("Random Topology Initializer", " Randomly connectes every particle with k other particles.")]32 [Item("Random Topology Initializer", "Each particle is informed by exactly k+1 distinct other particles (including itself).")] 33 33 [StorableClass] 34 34 public sealed class RandomTopologyInitializer : TopologyInitializer, IStochasticOperator { … … 65 65 var numbers = Enumerable.Range(0, swarmSize).ToList(); 66 66 numbers.RemoveAt(i); 67 var selectedNumbers = new List<int>(nrOfConnections); 67 var selectedNumbers = new List<int>(nrOfConnections + 1); 68 selectedNumbers.Add(i); 68 69 for (int j = 0; j < nrOfConnections && numbers.Count > 0; j++) { 69 70 int index = random.Next(numbers.Count); -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/RingTopologyInitializer.cs
r15091 r15181 26 26 27 27 namespace HeuristicLab.Algorithms.ParticleSwarmOptimization { 28 [Item("Ring Topology Initializer", " Connected every particle with its preceeding and its following particle.")]28 [Item("Ring Topology Initializer", "Each particle is informed by its preceeding and its succeeding particle wrapping around at the beginning and the end of the swarm (in addition each particle also informs itself).")] 29 29 [StorableClass] 30 30 public sealed class RingTopologyInitializer : TopologyInitializer { … … 47 47 ItemArray<IntArray> neighbors = new ItemArray<IntArray>(swarmSize); 48 48 for (int i = 0; i < swarmSize; i++) { 49 neighbors[i] = new IntArray(new[] { (swarmSize + i - 1) % swarmSize, (i + 1) % swarmSize });49 neighbors[i] = new IntArray(new[] { (swarmSize + i - 1) % swarmSize, i, (i + 1) % swarmSize }); 50 50 } 51 51 NeighborsParameter.ActualValue = neighbors; -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/SPSORandomTopologyInitializer.cs
r15167 r15181 30 30 31 31 namespace HeuristicLab.Algorithms.ParticleSwarmOptimization { 32 [Item(" Random Topology Initializer", "Randomly connectes every particle with k other particles.")]32 [Item("SPSO Random Topology Initializer", "Each particle informs k+1 other particles (including itself). The same particle (including itself) can be informed multiple times.")] 33 33 [StorableClass] 34 public sealed class RandomTopologyInitializer : TopologyInitializer, IStochasticOperator {34 public sealed class SPSORandomTopologyInitializer : TopologyInitializer, IStochasticOperator { 35 35 #region Parameters 36 36 public ILookupParameter<IRandom> RandomParameter { 37 37 get { return (ILookupParameter<IRandom>)Parameters["Random"]; } 38 38 } 39 public IValueLookupParameter<IntValue> NrOfConnectionsParameter {40 get { return (IValueLookupParameter<IntValue>)Parameters[" NrOfConnections"]; }39 public IValueLookupParameter<IntValue> KParameter { 40 get { return (IValueLookupParameter<IntValue>)Parameters["K"]; } 41 41 } 42 42 #endregion … … 44 44 #region Construction & Cloning 45 45 [StorableConstructor] 46 private RandomTopologyInitializer(bool deserializing) : base(deserializing) { }47 private RandomTopologyInitializer(RandomTopologyInitializer original, Cloner cloner) : base(original, cloner) { }48 public RandomTopologyInitializer() {46 private SPSORandomTopologyInitializer(bool deserializing) : base(deserializing) { } 47 private SPSORandomTopologyInitializer(SPSORandomTopologyInitializer original, Cloner cloner) : base(original, cloner) { } 48 public SPSORandomTopologyInitializer() { 49 49 Parameters.Add(new LookupParameter<IRandom>("Random", "A random number generation.")); 50 Parameters.Add(new ValueLookupParameter<IntValue>(" NrOfConnections", "Nr of connected neighbors.", new IntValue(3)));50 Parameters.Add(new ValueLookupParameter<IntValue>("K", "The number of informed particles (excluding itself).", new IntValue(3))); 51 51 } 52 52 53 53 public override IDeepCloneable Clone(Cloner cloner) { 54 return new RandomTopologyInitializer(this, cloner);54 return new SPSORandomTopologyInitializer(this, cloner); 55 55 } 56 56 #endregion … … 59 59 var random = RandomParameter.ActualValue; 60 60 var swarmSize = SwarmSizeParameter.ActualValue.Value; 61 var nrOfConnections = NrOfConnectionsParameter.ActualValue.Value;61 var k = KParameter.ActualValue.Value; 62 62 63 ItemArray<IntArray> neighbors = new ItemArray<IntArray>(swarmSize); 63 // SPSO: Each particle informs at most K+1 particles (at least itself and K others) 64 var particlesInform = Enumerable.Repeat(k + 1, swarmSize) 65 .Select((v, i) => new HashSet<int>(Enumerable.Range(0, v).Select(x => x == 0 ? i : random.Next(swarmSize)))).ToList(); 66 67 var neighbors = new ItemArray<IntArray>(swarmSize); 64 68 for (int i = 0; i < swarmSize; i++) { 65 var numbers = Enumerable.Range(0, swarmSize).ToList(); 66 numbers.RemoveAt(i); 67 var selectedNumbers = new List<int>(nrOfConnections); 68 for (int j = 0; j < nrOfConnections && numbers.Count > 0; j++) { 69 int index = random.Next(numbers.Count); 70 selectedNumbers.Add(numbers[index]); 71 numbers.RemoveAt(index); 72 } 73 neighbors[i] = new IntArray(selectedNumbers.ToArray()); 69 // calculate the informants for each particle 70 var informants = particlesInform.Select((val, idx) => val.Contains(i) ? idx : -1).Where(x => x >= 0).ToArray(); 71 neighbors[i] = new IntArray(informants); 74 72 } 75 73 NeighborsParameter.ActualValue = neighbors; -
trunk/sources/HeuristicLab.Algorithms.ParticleSwarmOptimization/3.3/VonNeumannTopologyInitializer.cs
r15091 r15181 26 26 27 27 namespace HeuristicLab.Algorithms.ParticleSwarmOptimization { 28 [Item("Von Neumann Topology Initializer", "Every particle is connected with the two following and the two previous particles wrapping around at the beginning and the end of the population.")]28 [Item("Von Neumann Topology Initializer", "Every particle is informed by the two following and the two previous particles wrapping around at the beginning and the end of the swarm (in addition each particle also informs itself).")] 29 29 [StorableClass] 30 30 public sealed class VonNeumannTopologyInitializer : TopologyInitializer { … … 51 51 (swarmSize + i-2) % swarmSize, 52 52 (swarmSize + i-1) % swarmSize, 53 i, 53 54 (i+1) % swarmSize, 54 55 (i+2) % swarmSize -
trunk/sources/HeuristicLab.Encodings.RealVectorEncoding/3.3/ParticleOperators/SPSO2011ParticleUpdater.cs
r15102 r15181 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 27 using HeuristicLab.Random; 27 28 28 29 namespace HeuristicLab.Encodings.RealVectorEncoding { … … 42 43 public static void UpdateVelocity(IRandom random, RealVector velocity, double maxVelocity, RealVector position, double inertia, RealVector personalBest, double personalBestAttraction, RealVector neighborBest, double neighborBestAttraction, double c = 1.193) { 43 44 var gravity = new double[velocity.Length]; 44 var direct = new RealVector(velocity.Length);45 var direction = new RealVector(velocity.Length); 45 46 var radius = 0.0; 47 48 var nd = new NormalDistributedRandom(random, 0, 1); 46 49 47 50 for (int i = 0; i < velocity.Length; i++) { 48 51 var g_id = c * ((personalBest[i] + neighborBest[i] - 2 * position[i]) / 3.0); 52 // center of the hyper-sphere 49 53 gravity[i] = g_id + position[i]; 50 direct[i] = (random.NextDouble() - 0.5) * 2; 54 // a random direction vector uniform over the surface of hyper-sphere, see http://mathworld.wolfram.com/HyperspherePointPicking.html 55 direction[i] = nd.NextDouble(); 51 56 radius += g_id * g_id; 52 57 } 53 58 59 // randomly choose a radius within the hyper-sphere 54 60 radius = random.NextDouble() * Math.Sqrt(radius); 55 61 56 var unitscale = Math.Sqrt(direct.DotProduct(direct)); 62 // unitscale is used to rescale the random direction vector to unit length, resp. length of the radius 63 var unitscale = Math.Sqrt(direction.DotProduct(direction)); 57 64 if (unitscale > 0) { 58 65 for (var i = 0; i < velocity.Length; i++) { 59 velocity[i] = velocity[i] * inertia + gravity[i] + direct[i] * radius / unitscale - position[i]; 66 var sampledPos = gravity[i] + direction[i] * radius / unitscale; 67 velocity[i] = velocity[i] * inertia + sampledPos - position[i]; 60 68 } 61 69 } -
trunk/sources/HeuristicLab.Encodings.RealVectorEncoding/3.3/ParticleOperators/SPSOSwarmUpdater.cs
r15102 r15181 34 34 35 35 namespace HeuristicLab.Encodings.RealVectorEncoding { 36 [Item("Swarm Updater (SPSO)", "Updates personal best point and quality as well as globalbest point and quality.")]36 [Item("Swarm Updater (SPSO)", "Updates personal best point and quality as well as neighbor best point and quality.")] 37 37 [StorableClass] 38 38 public sealed class SPSOSwarmUpdater : SingleSuccessorOperator, IRealVectorSwarmUpdater, ISingleObjectiveOperator { … … 126 126 Parameters.Add(new ScopeTreeLookupParameter<IntArray>("Neighbors", "The list of neighbors for each particle.")); 127 127 Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false.")); 128 Parameters.Add(new ValueLookupParameter<DoubleValue>("MaxVelocity", " Speed limit for each particle.", new DoubleValue(1000000)));128 Parameters.Add(new ValueLookupParameter<DoubleValue>("MaxVelocity", "The maximum velocity for each particle and initial velocity if scaling is used.", new DoubleValue(double.MaxValue))); 129 129 Parameters.Add(new LookupParameter<DoubleValue>("CurrentMaxVelocity", "Current value of the speed limit.")); 130 130 Parameters.Add(new LookupParameter<ResultCollection>("Results", "Results")); … … 132 132 #region Max Velocity Updating 133 133 Parameters.Add(new OptionalConstrainedValueParameter<IDiscreteDoubleValueModifier>("MaxVelocityScalingOperator", "Modifies the value")); 134 Parameters.Add(new ValueLookupParameter<DoubleValue>("FinalMaxVelocity", "The value of maximum velocity if PSO has reached maximum iterations.", new DoubleValue(1E-10)));134 Parameters.Add(new ValueLookupParameter<DoubleValue>("FinalMaxVelocity", "The value of maximum velocity if scaling is used and PSO has reached maximum iterations.", new DoubleValue(1E-10))); 135 135 Parameters.Add(new LookupParameter<IntValue>("MaxVelocityIndex", "The current index.", "Iterations")); 136 136 Parameters.Add(new ValueLookupParameter<IntValue>("MaxVelocityStartIndex", "The start index at which to start modifying 'Value'.", new IntValue(0))); … … 195 195 var neighborBest = new ItemArray<RealVector>(neighbors.Length); 196 196 var neighborBestQuality = new ItemArray<DoubleValue>(neighbors.Length); 197 double overallBest = double.NaN; 198 RealVector overallBestVector = null; 197 199 for (int n = 0; n < neighbors.Length; n++) { 198 var pairs = particles.Where(x => x.Item1 == n ||neighbors[n].Contains(x.Item1));199 var bestNeighbor = (maximization ? pairs.MaxItems(p => p.Item3)200 : pairs.MinItems(p => p.Item3)).First();200 var neighborhood = particles.Where(x => neighbors[n].Contains(x.Item1)); 201 var bestNeighbor = (maximization ? neighborhood.MaxItems(p => p.Item3) 202 : neighborhood.MinItems(p => p.Item3)).First(); 201 203 neighborBest[n] = bestNeighbor.Item2; 202 204 neighborBestQuality[n] = new DoubleValue(bestNeighbor.Item3); 205 if (double.IsNaN(overallBest) || maximization && bestNeighbor.Item3 > overallBest 206 || !maximization && bestNeighbor.Item3 < overallBest) { 207 overallBest = bestNeighbor.Item3; 208 overallBestVector = bestNeighbor.Item2; 209 } 203 210 } 204 211 NeighborBestParameter.ActualValue = neighborBest; 205 212 NeighborBestQualityParameter.ActualValue = neighborBestQuality; 213 SwarmBestQualityParameter.ActualValue = new DoubleValue(overallBest); 214 BestRealVectorParameter.ActualValue = overallBestVector; 206 215 } else { 207 216 // Neighbor best = Global best 208 217 var best = maximization ? particles.MaxItems(x => x.Item3).First() : particles.MinItems(x => x.Item3).First(); 209 NeighborBestParameter.ActualValue = new ItemArray<RealVector>(particles.Select(x => best.Item2)); 210 NeighborBestQualityParameter.ActualValue = new ItemArray<DoubleValue>(particles.Select(x => new DoubleValue(best.Item3))); 218 NeighborBestParameter.ActualValue = new ItemArray<RealVector>(Enumerable.Repeat(best.Item2, particles.Count)); 219 NeighborBestQualityParameter.ActualValue = new ItemArray<DoubleValue>(Enumerable.Repeat(new DoubleValue(best.Item3), particles.Count)); 220 SwarmBestQualityParameter.ActualValue = new DoubleValue(best.Item3); 221 BestRealVectorParameter.ActualValue = best.Item2; 211 222 } 212 223 } … … 224 235 !maximization && p.Item3 < personalBestQuality[p.Item1].Value) { 225 236 personalBestQuality[p.Item1].Value = p.Item3; 226 personalBest[p.Item1] = (RealVector)p.Item2.Clone();237 personalBest[p.Item1] = new RealVector(p.Item2); 227 238 } 228 239 } -
trunk/sources/HeuristicLab.Encodings.RealVectorEncoding/3.3/RealVector.cs
r15114 r15181 45 45 array[i] = elements[i]; 46 46 } 47 public RealVector(RealVector other) 48 : this(other.Length) { 49 Array.Copy(other.array, array, other.Length); 50 } 47 51 48 52 public override IDeepCloneable Clone(Cloner cloner) { -
trunk/sources/HeuristicLab.Tests/HeuristicLab-3.3/Samples/PsoSchwefelSampleTest.cs
r15096 r15181 52 52 SamplesUtils.RunAlgorithm(pso); 53 53 if (Environment.Is64BitProcess) { 54 Assert.AreEqual(2. 8334909529803554E-08, SamplesUtils.GetDoubleResult(pso, "BestQuality"));55 Assert.AreEqual( 128.08680460446624, SamplesUtils.GetDoubleResult(pso, "CurrentAverageQuality"));56 Assert.AreEqual( 713.67728101375587, SamplesUtils.GetDoubleResult(pso, "CurrentWorstQuality"));54 Assert.AreEqual(2.6641411068339949E-05, SamplesUtils.GetDoubleResult(pso, "BestQuality")); 55 Assert.AreEqual(94.28800902426002, SamplesUtils.GetDoubleResult(pso, "CurrentAverageQuality")); 56 Assert.AreEqual(992.93251114761892, SamplesUtils.GetDoubleResult(pso, "CurrentWorstQuality")); 57 57 Assert.AreEqual(200, SamplesUtils.GetIntResult(pso, "Iterations")); 58 58 } else { 59 Assert.AreEqual(2. 8334909529803554E-08, SamplesUtils.GetDoubleResult(pso, "BestQuality"));60 Assert.AreEqual( 128.08680460446624, SamplesUtils.GetDoubleResult(pso, "CurrentAverageQuality"));61 Assert.AreEqual( 713.67728101375587, SamplesUtils.GetDoubleResult(pso, "CurrentWorstQuality"));59 Assert.AreEqual(2.6641411068339949E-05, SamplesUtils.GetDoubleResult(pso, "BestQuality")); 60 Assert.AreEqual(94.28800902426002, SamplesUtils.GetDoubleResult(pso, "CurrentAverageQuality")); 61 Assert.AreEqual(992.93251114761892, SamplesUtils.GetDoubleResult(pso, "CurrentWorstQuality")); 62 62 Assert.AreEqual(200, SamplesUtils.GetIntResult(pso, "Iterations")); 63 63 }
Note: See TracChangeset
for help on using the changeset viewer.