Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/26/17 11:06:51 (8 years ago)
Author:
bwerth
Message:

#2699 reworked kenel functions (beta is always a scaling factor now), added LU-Decomposition as a fall-back if Cholesky-decomposition fails

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/InverseMultiquadraticKernel.cs

    r14887 r14891  
    2222using System;
    2323using HeuristicLab.Common;
    24 using HeuristicLab.Core;     
     24using HeuristicLab.Core;
    2525using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    2626
    2727namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    2828  [StorableClass]
    29   [Item("InverseMultiquadraticKernel", "A kernel function that uses the inverse multi-quadratic function  1 / sqrt(1+||x-c||^2/beta). Positive definite: beta > 0")]
     29  [Item("InverseMultiquadraticKernel", "A kernel function that uses the inverse multi-quadratic function  1 / sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")]
    3030  public class InverseMultiquadraticKernel : KernelBase {
     31
     32    private const double C = 1.0;
    3133    #region HLConstructors & Boilerplate
    3234    [StorableConstructor]
     
    3537    private void AfterDeserialization() { }
    3638    protected InverseMultiquadraticKernel(InverseMultiquadraticKernel original, Cloner cloner) : base(original, cloner) { }
    37     public InverseMultiquadraticKernel() {
    38     }
     39    public InverseMultiquadraticKernel() { }
    3940    public override IDeepCloneable Clone(Cloner cloner) {
    4041      return new InverseMultiquadraticKernel(this, cloner);
     
    4546      var beta = Beta.Value;
    4647      if (Math.Abs(beta) < double.Epsilon) return double.NaN;
    47       return 1 / Math.Sqrt(1 + norm * norm / beta);
     48      var d = norm / beta;
     49      return 1 / Math.Sqrt(C + d * d);
    4850    }
    4951
     52    //n²/(b³(n²/b² + C)^1.5)
    5053    protected override double GetGradient(double norm) {
    5154      var beta = Beta.Value;
    5255      if (Math.Abs(beta) < double.Epsilon) return double.NaN;
    53       return norm * norm / (2 * beta * beta * Math.Pow((norm * norm + beta) / beta, 1.5));
     56      var d = norm / beta;
     57      return d * d / (beta * Math.Pow(d * d + C, 1.5));
    5458    }
    5559  }
Note: See TracChangeset for help on using the changeset viewer.