Free cookie consent management tool by TermsFeed Policy Generator

Changeset 14601


Ignore:
Timestamp:
01/24/17 09:31:29 (8 years ago)
Author:
jkarder
Message:

#2205: worked on optimization networks

  • created separate project for ttp optimization
  • removed some unused classes
Location:
branches/OptimizationNetworks
Files:
11 added
8 deleted
2 edited
4 copied
7 moved

Legend:

Unmodified
Added
Removed
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/Problems/BinaryKnapsackProblem.cs

    r14598 r14601  
    1 using System;
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System;
    223using HeuristicLab.Common;
    324using HeuristicLab.Core;
     
    829using HeuristicLab.Problems.Binary;
    930
    10 namespace HeuristicLab.Networks.IntegratedOptimization {
     31namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
    1132  [Item("Binary Knapsack Problem (BKSP)", "Represents a problem whose objective is to maximize the number of true values.")]
    1233  [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 999)]
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/Problems/LootProfitProblem.cs

    r14598 r14601  
    1 using System;
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
    222using System.Collections.Generic;
    323using System.Linq;
    4 using System.Text;
    5 using System.Threading.Tasks;
     24using HeuristicLab.Common;
     25using HeuristicLab.Core;
     26using HeuristicLab.Encodings.BinaryVectorEncoding;
     27using HeuristicLab.Encodings.PermutationEncoding;
     28using HeuristicLab.Optimization;
     29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     30using HeuristicLab.Problems.Binary;
     31using HeuristicLab.Problems.TravelingSalesman;
    632
    7 namespace HeuristicLab.Networks.IntegratedOptimization.Problems {
    8   class LootProfitProblem {
     33namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
     34  [Item("Loot Profit Problem", "Represents a problem whose objective is to optimize a TTP loot for fixed TTP tour.")]
     35  [Creatable(CreatableAttribute.Categories.Problems, Priority = 999)]
     36  [StorableClass]
     37  public class LootProfitProblem : BinaryProblem {
     38    public override bool Maximization {
     39      get { return true; }
     40    }
     41
     42    [Storable]
     43    public TravelingSalesmanProblem Tsp { get; set; }
     44    [Storable]
     45    public BinaryKnapsackProblem Ksp { get; set; }
     46    [Storable]
     47    public Permutation FixedTspSolution { get; set; }
     48    [Storable]
     49    public int[] Availability { get; set; }
     50    [Storable]
     51    public double RentingRatio { get; set; }
     52    [Storable]
     53    public double MinSpeed { get; set; }
     54    [Storable]
     55    public double MaxSpeed { get; set; }
     56
     57    [StorableConstructor]
     58    protected LootProfitProblem(bool deserializing) : base(deserializing) { }
     59    protected LootProfitProblem(LootProfitProblem original, Cloner cloner) : base(original, cloner) {
     60      Tsp = cloner.Clone(original.Tsp);
     61      Ksp = cloner.Clone(original.Ksp);
     62      FixedTspSolution = cloner.Clone(original.FixedTspSolution);
     63      Availability = original.Availability != null ? (int[])original.Availability.Clone() : null;
     64      RentingRatio = original.RentingRatio;
     65      MinSpeed = original.MinSpeed;
     66      MaxSpeed = original.MaxSpeed;
     67    }
     68    public LootProfitProblem() : base() {
     69      Encoding.Length = 5;
     70    }
     71
     72    public override IDeepCloneable Clone(Cloner cloner) {
     73      return new LootProfitProblem(this, cloner);
     74    }
     75
     76    public override double Evaluate(BinaryVector vector, IRandom random) {
     77      return TtpUtils.EvaluateTtp(Tsp, FixedTspSolution.ToArray(),
     78                                  Ksp, vector.ToArray(),
     79                                  Availability, RentingRatio, MinSpeed, MaxSpeed);
     80    }
     81
     82    public override IEnumerable<Individual> GetNeighbors(Individual individual, IRandom random) {
     83      while (true) {
     84        var neighbor = individual.Copy();
     85        SinglePositionBitflipManipulator.Apply(random, neighbor.BinaryVector()); break;
     86        yield return neighbor;
     87      }
     88    }
    989  }
    1090}
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/Problems/TourProfitProblem.cs

    r14598 r14601  
    1 using System.Collections.Generic;
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System.Collections.Generic;
    223using System.Linq;
    324using HeuristicLab.Common;
     
    930using HeuristicLab.Problems.TravelingSalesman;
    1031
    11 namespace HeuristicLab.Networks.IntegratedOptimization {
     32namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
    1233  [Item("Tour Profit Problem", "Represents a problem whose objective is to optimize a TTP tour for fixed TTP loot.")]
    1334  [Creatable(CreatableAttribute.Categories.Problems, Priority = 999)]
     
    5374
    5475    public override double Evaluate(Individual individual, IRandom random) {
    55       return TtpUtils.EvaluateTtp(Tsp, individual.Permutation().CloneAsArray(),
    56                                   Ksp, FixedKspSolution.CloneAsArray(),
     76      return TtpUtils.EvaluateTtp(Tsp, individual.Permutation().ToArray(),
     77                                  Ksp, FixedKspSolution.ToArray(),
    5778                                  Availability, RentingRatio, MinSpeed, MaxSpeed);
    5879    }
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpImporter.cs

    r14598 r14601  
    22using HeuristicLab.Data;
    33
    4 namespace HeuristicLab.Networks.IntegratedOptimization {
     4namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
    55  public static class TtpImporter {
    66    public static void ImportTtpInstance(string filePath, out DoubleMatrix tspCoordinates,
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpNetwork1.cs

    r14600 r14601  
    1 using System;
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System;
    223using System.Collections.Generic;
    324using HeuristicLab.Algorithms.CMAEvolutionStrategy;
     
    1132using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    1233
    13 namespace HeuristicLab.Networks.IntegratedOptimization {
    14   [Item("TtpNetwork5", "An optimization network for the TTP.")]
     34namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
     35  [Item("TtpNetwork1", "Version 1 of a TTP optimization network.")]
    1536  [Creatable("Optimization Networks")]
    1637  [StorableClass]
    17   // standard ttp
    18   // cmaes variegates ksp values (factors)
    19   // 1) init cmaes (length = ksp.values.length)
    20   // 2) start cmaes
    21   // 3) evaluate vector as follows:
    22   // 4) change ksp values (mult by factor in vector)
    23   // 5) best ksp
    24   // 6) best tsp for ksp selection
    25   // 7) return ttp quality
    26   public sealed class TtpNetwork5 : Network, IOptimizer {
     38  public sealed class TtpNetwork1 : Network, IOptimizer {
    2739    #region Nodes
    28     public TtpOrchestratorNode5 Orchestrator {
    29       get { return (TtpOrchestratorNode5)Nodes["Orchestrator"]; }
     40    public TtpOrchestratorNode1 Orchestrator {
     41      get { return (TtpOrchestratorNode1)Nodes["Orchestrator"]; }
    3042    }
    3143
     
    4456
    4557    [StorableConstructor]
    46     private TtpNetwork5(bool deserializing) : base(deserializing) { }
    47     private TtpNetwork5(TtpNetwork5 original, Cloner cloner) : base(original, cloner) {
     58    private TtpNetwork1(bool deserializing) : base(deserializing) { }
     59    private TtpNetwork1(TtpNetwork1 original, Cloner cloner) : base(original, cloner) {
    4860      RegisterEvents();
    4961    }
     
    5971    }
    6072
    61     public TtpNetwork5() : base("TtpNetwork5") {
    62       var orchestratorNode = new TtpOrchestratorNode5("Orchestrator");
     73    public TtpNetwork1() : base("TtpNetwork1") {
     74      var orchestratorNode = new TtpOrchestratorNode1("Orchestrator");
    6375      Nodes.Add(orchestratorNode);
    6476
     
    7082      orchestratorNode.MetaSolverOrchestrationPort.ConnectedPort = metaSolverNode.OrchestrationPort;
    7183      Nodes.Add(metaSolverNode);
    72 
    73       //var tspSolverNode = new OrchestratedAlgorithmNode("TspSolver");
    74       //var osga = new OffspringSelectionGeneticAlgorithm();
    75       //osga.Problem = new TourProfitProblem();
    76       //osga.ComparisonFactorLowerBound.Value = 1.0;
    77       //osga.ComparisonFactorModifier = null;
    78       //osga.ComparisonFactorUpperBound.Value = 1.0;
    79       //var crossover = (MultiPermutationCrossover)(osga.Crossover = osga.CrossoverParameter.ValidValues.First(x => x is MultiPermutationCrossover));
    80       //foreach (var c in crossover.Operators)
    81       //  crossover.Operators.SetItemCheckedState(c, c is CosaCrossover || c is OrderCrossover2 || c is PartiallyMatchedCrossover);
    82       //osga.MaximumSelectionPressure.Value = 200;
    83       //osga.Mutator = osga.MutatorParameter.ValidValues.First(x => x is MultiPermutationManipulator);
    84       //osga.PopulationSize.Value = 200;
    85       //osga.Selector = osga.SelectorParameter.ValidValues.First(x => x is RandomSelector);
    86       //tspSolverNode.Algorithm = osga;
    87       //orchestratorNode.TspSolverOrchestrationPort.ConnectedPort = tspSolverNode.OrchestrationPort;
    88       //Nodes.Add(tspSolverNode);
    8984
    9085      var tspSolverNode = new OrchestratedAlgorithmNode("TspSolver");
     
    109104      IntValue kspCapacity; IntArray kspItemWeights; IntArray kspItemValues;
    110105      IntArray ttpAvailability; DoubleValue ttpMinSpeed; DoubleValue ttpMaxSpeed; DoubleValue ttpRentingRatio;
    111       TtpImporter.ImportTtpInstance(@"ttp-instances\berlin52-ttp\berlin52_n51_uncorr-similar-weights_05.ttp",
     106      TtpImporter.ImportTtpInstance(@"ttp-instances\berlin52-ttp\berlin52_n51_uncorr_01.ttp",
    112107          out tspCoordinates,
    113108          out kspCapacity, out kspItemValues, out kspItemWeights,
     
    133128
    134129    public override IDeepCloneable Clone(Cloner cloner) {
    135       return new TtpNetwork5(this, cloner);
     130      return new TtpNetwork1(this, cloner);
    136131    }
    137132
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpNetwork3.cs

    r14598 r14601  
    1 //using HeuristicLab.Algorithms.CMAEvolutionStrategy;
    2 //using HeuristicLab.Algorithms.LocalSearch;
    3 //using HeuristicLab.Algorithms.ParameterlessPopulationPyramid;
    4 //using HeuristicLab.Common;
    5 //using HeuristicLab.Core;
    6 //using HeuristicLab.Core.Networks;
    7 //using HeuristicLab.Data;
    8 //using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    9 
    10 //namespace HeuristicLab.Networks.IntegratedOptimization {
    11 //  [Item("TtpNetwork3", "An optimization network for the TTP.")]
    12 //  [Creatable("Optimization Networks")]
    13 //  [StorableClass]
    14 //  // standard ttp
    15 //  // cmaes variegates ksp values and tsp coordinates
    16 //  // 1) init cmaes (length = ksp.values.length)
    17 //  // 2) start cmaes
    18 //  // 3) evaluate vector as follows:
    19 //  // 4) change ksp values and tsp coordinates (mult by factor in vector)
    20 //  // 5) best ksp
    21 //  // 6) best tsp
    22 //  // 7) return ttp quality
    23 //  public sealed class TtpNetwork3 : Network {
    24 //    [StorableConstructor]
    25 //    private TtpNetwork3(bool deserializing) : base(deserializing) { }
    26 //    private TtpNetwork3(TtpNetwork3 original, Cloner cloner) : base(original, cloner) { }
    27 //    public TtpNetwork3() : base("TtpNetwork3") {
    28 //      var orchestratorNode = new TtpOrchestratorNode3();
    29 //      Nodes.Add(orchestratorNode);
    30 
    31 //      var metaSolverNode = new OrchestratedAlgorithmNode("MetaSolver");
    32 //      var cmaes = new CMAEvolutionStrategy();
    33 //      cmaes.MaximumEvaluatedSolutions = 3000;
    34 //      cmaes.Engine = new ParallelEngine.ParallelEngine();
    35 //      metaSolverNode.Algorithm = cmaes;
    36 //      orchestratorNode.MetaSolverOrchestrationPort.ConnectedPort = metaSolverNode.OrchestrationPort;
    37 //      Nodes.Add(metaSolverNode);
    38 
    39 //      var tspSolverNode = new OrchestratedAlgorithmNode("TspSolver") { CloneAlgorithm = true };
    40 //      var ls = new LocalSearch();
    41 //      ls.Problem = orchestratorNode.TspParameter.Value;
    42 //      ls.MaximumIterations.Value = 100;
    43 //      tspSolverNode.Algorithm = ls;
    44 //      orchestratorNode.TspSolverOrchestrationPort.ConnectedPort = tspSolverNode.OrchestrationPort;
    45 //      Nodes.Add(tspSolverNode);
    46 
    47 //      var kspSolverNode = new OrchestratedAlgorithmNode("KspSolver") { CloneAlgorithm = true };
    48 //      var p3 = new ParameterlessPopulationPyramid();
    49 //      p3.Problem = orchestratorNode.KspParameter.Value;
    50 //      p3.MaximumRuntime = 3;
    51 //      kspSolverNode.Algorithm = p3;
    52 //      orchestratorNode.KspSolverOrchestrationPort.ConnectedPort = kspSolverNode.OrchestrationPort;
    53 //      Nodes.Add(kspSolverNode);
    54 
    55 //      #region Import
    56 //      DoubleMatrix tspCoordinates;
    57 //      IntValue kspCapacity; IntArray kspItemWeights; IntArray kspItemValues;
    58 //      IntArray ttpAvailability; DoubleValue ttpMinSpeed; DoubleValue ttpMaxSpeed; DoubleValue ttpRentingRatio;
    59 //      TtpImporter.ImportTtpInstance(@"ttp-instances\berlin52-ttp\berlin52_n51_uncorr_01.ttp",
    60 //          out tspCoordinates,
    61 //          out kspCapacity, out kspItemValues, out kspItemWeights,
    62 //          out ttpAvailability, out ttpMinSpeed, out ttpMaxSpeed, out ttpRentingRatio);
    63 
    64 //      var tsp = orchestratorNode.TspParameter.Value;
    65 //      tsp.Coordinates = tspCoordinates;
    66 
    67 //      var ksp = orchestratorNode.KspParameter.Value;
    68 //      ksp.KnapsackCapacity = kspCapacity;
    69 //      ksp.Encoding.Length = kspItemValues.Length;
    70 //      ksp.Values = kspItemValues;
    71 //      ksp.Weights = kspItemWeights;
    72 
    73 //      orchestratorNode.AvailabilityParameter.Value = ttpAvailability;
    74 //      orchestratorNode.MinSpeedParameter.Value = ttpMinSpeed;
    75 //      orchestratorNode.MaxSpeedParameter.Value = ttpMaxSpeed;
    76 //      orchestratorNode.RentingRatioParameter.Value = ttpRentingRatio;
    77 //      #endregion
    78 //    }
    79 
    80 //    public override IDeepCloneable Clone(Cloner cloner) {
    81 //      return new TtpNetwork3(this, cloner);
    82 //    }
    83 //  }
    84 //}
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System;
     23using System.Collections.Generic;
     24using HeuristicLab.Algorithms.CMAEvolutionStrategy;
     25using HeuristicLab.Algorithms.LocalSearch;
     26using HeuristicLab.Algorithms.ParameterlessPopulationPyramid;
     27using HeuristicLab.Common;
     28using HeuristicLab.Core;
     29using HeuristicLab.Core.Networks;
     30using HeuristicLab.Data;
     31using HeuristicLab.Optimization;
     32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     33
     34namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
     35  [Item("TtpNetwork3", "Version 3 of a TTP optimization network.")]
     36  [Creatable("Optimization Networks")]
     37  [StorableClass]
     38  public sealed class TtpNetwork3 : Network, IOptimizer {
     39    #region Nodes
     40    public TtpOrchestratorNode1 Orchestrator {
     41      get { return (TtpOrchestratorNode1)Nodes["Orchestrator"]; }
     42    }
     43
     44    public OrchestratedAlgorithmNode MetaSolver {
     45      get { return (OrchestratedAlgorithmNode)Nodes["MetaSolver"]; }
     46    }
     47
     48    public OrchestratedAlgorithmNode TspSolver {
     49      get { return (OrchestratedAlgorithmNode)Nodes["TspSolver"]; }
     50    }
     51
     52    public OrchestratedAlgorithmNode KspSolver {
     53      get { return (OrchestratedAlgorithmNode)Nodes["KspSolver"]; }
     54    }
     55    #endregion
     56
     57    [StorableConstructor]
     58    private TtpNetwork3(bool deserializing) : base(deserializing) { }
     59    private TtpNetwork3(TtpNetwork3 original, Cloner cloner) : base(original, cloner) {
     60      RegisterEvents();
     61    }
     62
     63    private void RegisterEvents() {
     64      MetaSolver.Algorithm.ExecutionStateChanged += OnExecutionStateChanged;
     65      MetaSolver.Algorithm.ExecutionTimeChanged += OnExecutionTimeChanged;
     66      MetaSolver.Algorithm.Prepared += OnPrepared;
     67      MetaSolver.Algorithm.Started += OnStarted;
     68      MetaSolver.Algorithm.Paused += OnPaused;
     69      MetaSolver.Algorithm.Stopped += OnStopped;
     70      MetaSolver.Algorithm.ExceptionOccurred += OnExceptionOccurred;
     71    }
     72
     73    public TtpNetwork3() : base("TtpNetwork3") {
     74      var orchestratorNode = new TtpOrchestratorNode3("Orchestrator");
     75      Nodes.Add(orchestratorNode);
     76
     77      var metaSolverNode = new OrchestratedAlgorithmNode("MetaSolver");
     78      var cmaes = new CMAEvolutionStrategy();
     79      cmaes.Problem = new VariegationProblem();
     80      cmaes.MaximumGenerations = 80;
     81      metaSolverNode.Algorithm = cmaes;
     82      orchestratorNode.MetaSolverOrchestrationPort.ConnectedPort = metaSolverNode.OrchestrationPort;
     83      Nodes.Add(metaSolverNode);
     84
     85      var tspSolverNode = new OrchestratedAlgorithmNode("TspSolver");
     86      var ls = new LocalSearch();
     87      ls.Problem = orchestratorNode.KspParameter.Value;
     88      ls.MaximumIterations.Value = 100;
     89      ls.SampleSize.Value = 2000;
     90      tspSolverNode.Algorithm = ls;
     91      orchestratorNode.TspSolverOrchestrationPort.ConnectedPort = tspSolverNode.OrchestrationPort;
     92      Nodes.Add(tspSolverNode);
     93
     94      var kspSolverNode = new OrchestratedAlgorithmNode("KspSolver");
     95      var p3 = new ParameterlessPopulationPyramid();
     96      p3.Problem = orchestratorNode.KspParameter.Value;
     97      p3.MaximumRuntime = 3;
     98      kspSolverNode.Algorithm = p3;
     99      orchestratorNode.KspSolverOrchestrationPort.ConnectedPort = kspSolverNode.OrchestrationPort;
     100      Nodes.Add(kspSolverNode);
     101
     102      #region Import
     103      DoubleMatrix tspCoordinates;
     104      IntValue kspCapacity; IntArray kspItemWeights; IntArray kspItemValues;
     105      IntArray ttpAvailability; DoubleValue ttpMinSpeed; DoubleValue ttpMaxSpeed; DoubleValue ttpRentingRatio;
     106      TtpImporter.ImportTtpInstance(@"ttp-instances\berlin52-ttp\berlin52_n51_uncorr_01.ttp",
     107          out tspCoordinates,
     108          out kspCapacity, out kspItemValues, out kspItemWeights,
     109          out ttpAvailability, out ttpMinSpeed, out ttpMaxSpeed, out ttpRentingRatio);
     110
     111      var tsp = orchestratorNode.TspParameter.Value;
     112      tsp.Coordinates = tspCoordinates;
     113
     114      var ksp = orchestratorNode.KspParameter.Value;
     115      ksp.KnapsackCapacity = kspCapacity;
     116      ksp.Encoding.Length = kspItemValues.Length;
     117      ksp.Values = kspItemValues;
     118      ksp.Weights = kspItemWeights;
     119
     120      orchestratorNode.AvailabilityParameter.Value = ttpAvailability;
     121      orchestratorNode.MinSpeedParameter.Value = ttpMinSpeed;
     122      orchestratorNode.MaxSpeedParameter.Value = ttpMaxSpeed;
     123      orchestratorNode.RentingRatioParameter.Value = ttpRentingRatio;
     124      #endregion
     125
     126      RegisterEvents();
     127    }
     128
     129    public override IDeepCloneable Clone(Cloner cloner) {
     130      return new TtpNetwork3(this, cloner);
     131    }
     132
     133    [StorableHook(HookType.AfterDeserialization)]
     134    private void AfterDeserialization() {
     135      RegisterEvents();
     136    }
     137
     138    #region IOptimizer Members
     139    public RunCollection Runs { get { return MetaSolver.Algorithm.Runs; } }
     140    public IEnumerable<IOptimizer> NestedOptimizers { get { yield break; } }
     141    public ExecutionState ExecutionState { get { return MetaSolver.Algorithm.ExecutionState; } }
     142    public TimeSpan ExecutionTime { get { return MetaSolver.Algorithm.ExecutionTime; } }
     143
     144    public void Prepare(bool clearRuns) { Prepare(); }
     145    public void Prepare() { Orchestrator.Prepare(); }
     146    public void Start() {
     147      if (MetaSolver.Algorithm.ExecutionState == ExecutionState.Prepared)
     148        Orchestrator.Prepare();
     149      Orchestrator.StartAsync();
     150    }
     151    public void Pause() { Orchestrator.Pause(); }
     152    public void Stop() { Orchestrator.Stop(); }
     153    #endregion
     154
     155    private void OnExecutionStateChanged(object sender, EventArgs e) { OnExecutionStateChanged(); }
     156    private void OnExecutionTimeChanged(object sender, EventArgs e) { OnExecutionTimeChanged(); }
     157    private void OnPrepared(object sender, EventArgs e) { OnPrepared(); }
     158    private void OnStarted(object sender, EventArgs e) { OnStarted(); }
     159    private void OnPaused(object sender, EventArgs e) { OnPaused(); }
     160    private void OnStopped(object sender, EventArgs e) { OnStopped(); }
     161    private void OnExceptionOccurred(object sender, EventArgs<Exception> e) { OnExceptionOccurred(e.Value); }
     162
     163    public event EventHandler ExecutionStateChanged;
     164    private void OnExecutionStateChanged() {
     165      var handler = ExecutionStateChanged;
     166      if (handler != null) handler(this, EventArgs.Empty);
     167    }
     168
     169    public event EventHandler ExecutionTimeChanged;
     170    private void OnExecutionTimeChanged() {
     171      var handler = ExecutionTimeChanged;
     172      if (handler != null) handler(this, EventArgs.Empty);
     173    }
     174
     175    public event EventHandler Prepared;
     176    private void OnPrepared() {
     177      var handler = Prepared;
     178      if (handler != null) handler(this, EventArgs.Empty);
     179    }
     180
     181    public event EventHandler Started;
     182    private void OnStarted() {
     183      var handler = Started;
     184      if (handler != null) handler(this, EventArgs.Empty);
     185    }
     186
     187    public event EventHandler Paused;
     188    private void OnPaused() {
     189      var handler = Paused;
     190      if (handler != null) handler(this, EventArgs.Empty);
     191    }
     192
     193    public event EventHandler Stopped;
     194    private void OnStopped() {
     195      var handler = Stopped;
     196      if (handler != null) handler(this, EventArgs.Empty);
     197    }
     198
     199    public event EventHandler<EventArgs<Exception>> ExceptionOccurred;
     200    private void OnExceptionOccurred(Exception exception) {
     201      var handler = ExceptionOccurred;
     202      if (handler != null) handler(this, new EventArgs<Exception>(exception));
     203    }
     204  }
     205}
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpOrchestratorNode1.cs

    r14600 r14601  
    1 using System;
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System;
    223using System.Collections.Generic;
    324using System.Linq;
     
    1738using HeuristicLab.Problems.TravelingSalesman;
    1839
    19 namespace HeuristicLab.Networks.IntegratedOptimization {
    20   [Item("TtpOrchestratorNode5", "An abstract base class for an orchestrator node for the TTP.")]
     40namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
     41  [Item("TtpOrchestratorNode1", "Orchestrator for TTP optimization network version 1.")]
    2142  [StorableClass]
    22   public sealed class TtpOrchestratorNode5 : OrchestratorNode {
     43  public sealed class TtpOrchestratorNode1 : OrchestratorNode {
    2344    #region Constants
    2445    private const string TspParameterName = "TSP";
     
    3455    #endregion
    3556
    36     [Storable]
    3757    private ResultCollection tspResults, kspResults;
    3858
     
    96116
    97117    [StorableConstructor]
    98     private TtpOrchestratorNode5(bool deserializing) : base(deserializing) { }
    99     private TtpOrchestratorNode5(TtpOrchestratorNode5 original, Cloner cloner) : base(original, cloner) {
     118    private TtpOrchestratorNode1(bool deserializing) : base(deserializing) { }
     119    private TtpOrchestratorNode1(TtpOrchestratorNode1 original, Cloner cloner) : base(original, cloner) {
    100120      RegisterEvents();
    101121    }
    102     public TtpOrchestratorNode5() : this("TtpOrchestratorNode5") { }
    103     public TtpOrchestratorNode5(string name) : base(name) {
     122    public TtpOrchestratorNode1() : this("TtpOrchestratorNode1") { }
     123    public TtpOrchestratorNode1(string name) : base(name) {
    104124      #region Configure Parameters
    105125      Parameters.Add(new ValueParameter<IntValue>(IterationsParameterName, new IntValue(20)));
     
    125145
    126146    public override IDeepCloneable Clone(Cloner cloner) {
    127       return new TtpOrchestratorNode5(this, cloner);
     147      return new TtpOrchestratorNode1(this, cloner);
    128148    }
    129149
     
    230250      var bestKspQuality = KnapsackEvaluator.Apply(bestKspSolution, kspCapacity, kspPenalty, kspWeights, kspValues).Quality;
    231251      var loot = new KnapsackSolution(bestKspSolution, bestKspQuality, kspCapacity, kspWeights, kspValues);
    232       kspResults.Add(new Result("Best KSP Solution", loot));
    233252
    234253      var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpOrchestratorNode3.cs

    r14598 r14601  
    1 //using System;
    2 //using System.Collections.Concurrent;
    3 //using System.Collections.Generic;
    4 //using System.Linq;
    5 //using System.Threading;
    6 //using HeuristicLab.Common;
    7 //using HeuristicLab.Core;
    8 //using HeuristicLab.Core.Networks;
    9 //using HeuristicLab.Data;
    10 //using HeuristicLab.Encodings.BinaryVectorEncoding;
    11 //using HeuristicLab.Encodings.PermutationEncoding;
    12 //using HeuristicLab.Encodings.RealVectorEncoding;
    13 //using HeuristicLab.Operators;
    14 //using HeuristicLab.Optimization;
    15 //using HeuristicLab.Parameters;
    16 //using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    17 //using HeuristicLab.Problems.Knapsack;
    18 //using HeuristicLab.Problems.TravelingSalesman;
    19 
    20 //namespace HeuristicLab.Networks.IntegratedOptimization {
    21 //  [Item("TtpOrchestratorNode3", "An abstract base class for an orchestrator node for the TTP.")]
    22 //  [StorableClass]
    23 //  public sealed class TtpOrchestratorNode3 : OrchestratorNode {
    24 //    #region Constants
    25 //    private const string TspParameterName = "TSP";
    26 //    private const string KspParameterName = "KSP";
    27 //    private const string AvailabilityParameterName = "Availability";
    28 //    private const string MinSpeedParameterName = "MinSpeed";
    29 //    private const string MaxSpeedParameterName = "MaxSpeed";
    30 //    private const string RentingRatioParameterName = "RentingRatio";
    31 //    private const string IterationsParameterName = "Iterations";
    32 //    private const string MetaSolverName = "MetaSolver";
    33 //    private const string TspSolverName = "TspSolver";
    34 //    private const string KspSolverName = "KspSolver";
    35 //    private const string TspResultsResultName = "TspResults";
    36 //    private const string KspResultsResultName = "KspResults";
    37 //    private const string TtpResultsResultName = "TtpResults";
    38 //    #endregion
    39 
    40 //    #region Thread Results
    41 //    private object locker = new object();
    42 //    private ConcurrentDictionary<int, ResultCollection> tspThreadResults = new ConcurrentDictionary<int, ResultCollection>();
    43 //    private ConcurrentDictionary<int, ResultCollection> kspThreadResults = new ConcurrentDictionary<int, ResultCollection>();
    44 //    #endregion
    45 
    46 //    #region Parameters
    47 //    public IValueParameter<IntValue> IterationsParameter {
    48 //      get { return (IValueParameter<IntValue>)Parameters[IterationsParameterName]; }
    49 //    }
    50 
    51 //    public IValueParameter<TravelingSalesmanProblem> TspParameter {
    52 //      get { return (IValueParameter<TravelingSalesmanProblem>)Parameters[TspParameterName]; }
    53 //    }
    54 
    55 //    public IValueParameter<BinaryKnapsackProblem> KspParameter {
    56 //      get { return (IValueParameter<BinaryKnapsackProblem>)Parameters[KspParameterName]; }
    57 //    }
    58 
    59 //    public IValueParameter<IntArray> AvailabilityParameter {
    60 //      get { return (IValueParameter<IntArray>)Parameters[AvailabilityParameterName]; }
    61 //    }
    62 
    63 //    public IValueParameter<DoubleValue> MinSpeedParameter {
    64 //      get { return (IValueParameter<DoubleValue>)Parameters[MinSpeedParameterName]; }
    65 //    }
    66 
    67 //    public IValueParameter<DoubleValue> MaxSpeedParameter {
    68 //      get { return (IValueParameter<DoubleValue>)Parameters[MaxSpeedParameterName]; }
    69 //    }
    70 
    71 //    public IValueParameter<DoubleValue> RentingRatioParameter {
    72 //      get { return (IValueParameter<DoubleValue>)Parameters[RentingRatioParameterName]; }
    73 //    }
    74 //    #endregion
    75 
    76 //    #region Ports
    77 //    public IMessagePort MetaSolverOrchestrationPort {
    78 //      get { return (IMessagePort)Ports[MetaSolverName + OrchestrationPortNameSuffix]; }
    79 //    }
    80 
    81 //    public IMessagePort MetaSolverEvaluationPort {
    82 //      get { return (IMessagePort)Ports[MetaSolverName + EvaluationPortNameSuffix]; }
    83 //    }
    84 
    85 //    public IMessagePort TspSolverOrchestrationPort {
    86 //      get { return (IMessagePort)Ports[TspSolverName + OrchestrationPortNameSuffix]; }
    87 //    }
    88 
    89 //    public IMessagePort TspSolverEvaluationPort {
    90 //      get { return (IMessagePort)Ports[TspSolverName + EvaluationPortNameSuffix]; }
    91 //    }
    92 
    93 //    public IMessagePort KspSolverOrchestrationPort {
    94 //      get { return (IMessagePort)Ports[KspSolverName + OrchestrationPortNameSuffix]; }
    95 //    }
    96 
    97 //    public IMessagePort KspSolverEvaluationPort {
    98 //      get { return (IMessagePort)Ports[KspSolverName + EvaluationPortNameSuffix]; }
    99 //    }
    100 //    #endregion
    101 
    102 //    #region Results
    103 //    public ItemList<ResultCollection> TspResults {
    104 //      get { return (ItemList<ResultCollection>)Results[TspResultsResultName].Value; }
    105 //    }
    106 
    107 //    public ItemList<ResultCollection> KspResults {
    108 //      get { return (ItemList<ResultCollection>)Results[KspResultsResultName].Value; }
    109 //    }
    110 
    111 //    public ItemList<ResultCollection> TtpResults {
    112 //      get { return (ItemList<ResultCollection>)Results[TtpResultsResultName].Value; }
    113 //    }
    114 //    #endregion
    115 
    116 //    [StorableConstructor]
    117 //    private TtpOrchestratorNode3(bool deserializing) : base(deserializing) { }
    118 //    private TtpOrchestratorNode3(TtpOrchestratorNode3 original, Cloner cloner) : base(original, cloner) { }
    119 //    public TtpOrchestratorNode3() : this("TtpOrchestratorNode3") { }
    120 //    public TtpOrchestratorNode3(string name) : base(name) {
    121 //      #region Configure Parameters
    122 //      Parameters.Add(new ValueParameter<IntValue>(IterationsParameterName, new IntValue(20)));
    123 //      Parameters.Add(new ValueParameter<TravelingSalesmanProblem>(TspParameterName, new TravelingSalesmanProblem()));
    124 //      Parameters.Add(new ValueParameter<BinaryKnapsackProblem>(KspParameterName, new BinaryKnapsackProblem()));
    125 //      Parameters.Add(new ValueParameter<IntArray>(AvailabilityParameterName));
    126 //      Parameters.Add(new ValueParameter<DoubleValue>(MinSpeedParameterName, new DoubleValue(0.1)));
    127 //      Parameters.Add(new ValueParameter<DoubleValue>(MaxSpeedParameterName, new DoubleValue(1.0)));
    128 //      Parameters.Add(new ValueParameter<DoubleValue>(RentingRatioParameterName, new DoubleValue(0.5)));
    129 //      #endregion
    130 
    131 //      #region Configure Ports
    132 //      AddOrchestrationPort<VariegationProblem>(MetaSolverName);
    133 //      AddEvaluationPort<RealVector>(MetaSolverName, "RealVector", "Quality");
    134 //      AddOrchestrationPort<TravelingSalesmanProblem>(TspSolverName);
    135 //      AddEvaluationPort<Permutation>(TspSolverName, "TSPTour", "TSPTourLength");
    136 //      AddOrchestrationPort<BinaryKnapsackProblem>(KspSolverName);
    137 //      AddEvaluationPort<BinaryVector>(KspSolverName, "KnapsackSolution", "Quality");
    138 
    139 //      MetaSolverOrchestrationPort.ConnectedPortChanged += MetaSolverOrchestrationPort_ConnectedPortChanged;
    140 //      TspSolverOrchestrationPort.ConnectedPortChanged += TspSolverOrchestrationPort_ConnectedPortChanged;
    141 //      KspSolverOrchestrationPort.ConnectedPortChanged += KspSolverOrchestrationPort_ConnectedPortChanged;
    142 //      #endregion
    143 //    }
    144 
    145 //    public override IDeepCloneable Clone(Cloner cloner) {
    146 //      return new TtpOrchestratorNode3(this, cloner);
    147 //    }
    148 
    149 //    public override void Prepare() {
    150 //      tspThreadResults.Clear();
    151 //      kspThreadResults.Clear();
    152 //      Results.Clear();
    153 //      Results.Add(new Result(TspResultsResultName, new ItemList<ResultCollection>()));
    154 //      Results.Add(new Result(KspResultsResultName, new ItemList<ResultCollection>()));
    155 //      Results.Add(new Result(TtpResultsResultName, new ItemList<ResultCollection>()));
    156 //    }
    157 
    158 //    public override void Start() {
    159 //      var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
    160 //      metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.QualityAdaption);
    161 //      var problem = new VariegationProblem();
    162 //      problem.Encoding.Length = KspParameter.Value.Length + TspParameter.Value.Coordinates.Rows * 2;
    163 //      problem.Encoding.Bounds = new DoubleMatrix(new[,] { { -1.0, 1.0 } });
    164 //      metaMsg["Problem"] = problem;
    165 //      MetaSolverOrchestrationPort.SendMessage(metaMsg);
    166 //    }
    167 
    168 //    public override void Pause() {
    169 //      throw new NotImplementedException();
    170 //    }
    171 
    172 //    public override void Stop() {
    173 //      throw new NotImplementedException();
    174 //    }
    175 
    176 //    protected override void ProcessMessage(IMessage message, IMessagePort port, CancellationToken token) {
    177 //      var messageActions = new Dictionary<IMessagePort, Action<IMessage>>();
    178 //      messageActions.Add(MetaSolverOrchestrationPort, MetaSolverOrchestrationPortMessage);
    179 //      messageActions.Add(MetaSolverEvaluationPort, MetaSolverEvaluationPortMessage);
    180 //      messageActions.Add(TspSolverOrchestrationPort, TspSolverOrchestrationPortMessage);
    181 //      messageActions.Add(TspSolverEvaluationPort, TspSolverEvaluationPortMessage);
    182 //      messageActions.Add(KspSolverOrchestrationPort, KspSolverOrchestrationPortMessage);
    183 //      messageActions.Add(KspSolverEvaluationPort, KspSolverEvaluationPortMessage);
    184 
    185 //      messageActions[port](message);
    186 
    187 //      base.ProcessMessage(message, port, token);
    188 //    }
    189 
    190 //    #region MetaSolver Message Handling
    191 //    private void MetaSolverOrchestrationPortMessage(IMessage message) { }
    192 
    193 //    private void MetaSolverEvaluationPortMessage(IMessage message) {
    194 //      var factors = (RealVector)message["RealVector"];
    195 //      int fi = 0;
    196 
    197 //      var ksp = (BinaryKnapsackProblem)KspParameter.Value.Clone();
    198 //      while (fi < ksp.Values.Length) {
    199 //        ksp.Values[fi] = (int)Math.Ceiling(ksp.Values[fi] * factors[fi]);
    200 //        ++fi;
    201 //      }
    202 
    203 //      var kspMsg = KspSolverOrchestrationPort.PrepareMessage();
    204 //      kspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
    205 //      kspMsg["Problem"] = ksp;
    206 //      KspSolverOrchestrationPort.SendMessage(kspMsg);
    207 
    208 //      var kspResults = kspThreadResults[Thread.CurrentThread.ManagedThreadId];
    209 //      var bestKspSolution = (BinaryVector)kspResults["Best Solution"].Value;
    210 //      var kspCapacity = (IntValue)KspParameter.Value.KnapsackCapacity.Clone();
    211 //      var kspPenalty = new DoubleValue(0.0);
    212 //      var kspWeights = (IntArray)KspParameter.Value.Weights.Clone();
    213 //      var kspValues = (IntArray)KspParameter.Value.Values.Clone();
    214 //      var bestKspQuality = KnapsackEvaluator.Apply(bestKspSolution, kspCapacity, kspPenalty, kspWeights, kspValues).Quality;
    215 //      var loot = new KnapsackSolution(bestKspSolution, bestKspQuality, kspCapacity, kspWeights, kspValues);
    216 //      kspResults.Add(new Result("Best KSP Solution", loot));
    217 
    218 //      var tsp = (TravelingSalesmanProblem)TspParameter.Value.Clone();
    219 //      for (int j = 0; j < tsp.Coordinates.Rows; j++) {
    220 //        tsp.Coordinates[j, 0] = (int)Math.Ceiling(tsp.Coordinates[j, 0] * factors[fi + j * 2]);
    221 //        tsp.Coordinates[j, 1] = (int)Math.Ceiling(tsp.Coordinates[j, 1] * factors[fi + j * 2 + 1]);
    222 //      }
    223 
    224 //      var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
    225 //      tspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
    226 //      tspMsg["Problem"] = tsp;
    227 //      TspSolverOrchestrationPort.SendMessage(tspMsg);
    228 
    229 //      var tspResults = tspThreadResults[Thread.CurrentThread.ManagedThreadId];
    230 //      var tour = (PathTSPTour)tspResults["Best TSP Solution"].Value;
    231 //      tour.Coordinates = (DoubleMatrix)TspParameter.Value.Coordinates.Clone();
    232 //      tour.Quality.Value = TSPCoordinatesPathEvaluator.Apply(new TSPEuclideanPathEvaluator(), tour.Coordinates, tour.Permutation);
    233 
    234 //      #region Analyze
    235 //      double objectiveValue = EvaluateTtp(TspParameter.Value, tour.Permutation.ToArray(), KspParameter.Value, loot.BinaryVector.ToArray());
    236 //      ((DoubleValue)message["Quality"]).Value = objectiveValue;
    237 
    238 //      var ttpResults = new ResultCollection();
    239 //      ttpResults.Add(new Result("Quality", new DoubleValue(objectiveValue)));
    240 //      ttpResults.Add(new Result("Tour", tour));
    241 //      ttpResults.Add(new Result("Loot", loot));
    242 
    243 //      lock (locker) {
    244 //        TtpResults.Add(ttpResults);
    245 //        TspResults.Add(tspResults);
    246 //        KspResults.Add(kspResults);
    247 
    248 //        IResult bestQuality;
    249 //        if (!Results.TryGetValue("Best TTP Quality", out bestQuality)) {
    250 //          Results.Add(new Result("Best TTP Quality", new DoubleValue(objectiveValue)));
    251 //          Results.Add(new Result("Best Tour", tour));
    252 //          Results.Add(new Result("Best Loot", loot));
    253 //        } else if (((DoubleValue)bestQuality.Value).Value < objectiveValue) {
    254 //          ((DoubleValue)bestQuality.Value).Value = objectiveValue;
    255 //          Results["Best Tour"].Value = tour;
    256 //          Results["Best Loot"].Value = loot;
    257 //        }
    258 //      }
    259 //      #endregion
    260 //    }
    261 //    #endregion
    262 
    263 //    #region TspSolver Message Handling
    264 //    private void TspSolverOrchestrationPortMessage(IMessage message) {
    265 //      var results = (ResultCollection)message["Results"];
    266 //      if (results.ContainsKey("Best TSP Solution")) {
    267 //        tspThreadResults[Thread.CurrentThread.ManagedThreadId] = results;
    268 //      }
    269 //    }
    270 
    271 //    private void TspSolverEvaluationPortMessage(IMessage message) { }
    272 //    #endregion
    273 
    274 //    #region KspSolver Message Handling
    275 //    private void KspSolverOrchestrationPortMessage(IMessage message) {
    276 //      var results = (ResultCollection)message["Results"];
    277 //      if (results.ContainsKey("Best Solution")) {
    278 //        kspThreadResults[Thread.CurrentThread.ManagedThreadId] = results;
    279 //      }
    280 //    }
    281 
    282 //    private void KspSolverEvaluationPortMessage(IMessage message) { }
    283 //    #endregion
    284 
    285 //    #region Helpers
    286 //    private double EvaluateTtp(TravelingSalesmanProblem tsp, int[] tour, BinaryKnapsackProblem ksp, bool[] loot) {
    287 //      bool feasible;
    288 //      return EvaluateTtp(tsp, tour, ksp, loot, out feasible);
    289 //    }
    290 
    291 //    private double EvaluateTtp(TravelingSalesmanProblem tsp, int[] tour, BinaryKnapsackProblem ksp, bool[] loot, out bool feasible) {
    292 //      double collectedWeight = 0.0;
    293 //      double objectiveValue = 0.0;
    294 //      double infeasibleBaseLine = -1000000.0;
    295 //      double speedCoefficient = (MaxSpeedParameter.Value.Value - MinSpeedParameter.Value.Value) / ksp.KnapsackCapacity.Value;
    296 
    297 //      int hideoutIdx = 0;
    298 //      while (tour[hideoutIdx] != 0) hideoutIdx++;
    299 //      int cityIdx = (hideoutIdx + 1) % tour.Length;
    300 //      int lastCityIdx = hideoutIdx;
    301 
    302 //      while (cityIdx != hideoutIdx) {
    303 //        double oldCollectedWeight = collectedWeight;
    304 //        var availableItems = AvailabilityParameter.Value.Select((c, i) => new { CityIdx = c, ItemIdx = i }).Where(x => x.CityIdx == tour[cityIdx]);
    305 
    306 //        foreach (var item in availableItems) {
    307 //          if (!loot[item.ItemIdx]) continue;
    308 //          collectedWeight += ksp.Weights[item.ItemIdx];
    309 //          objectiveValue += ksp.Values[item.ItemIdx];
    310 //        }
    311 
    312 //        objectiveValue -= Distance(tsp.Coordinates.CloneAsMatrix(), tour[lastCityIdx], tour[cityIdx]) * RentingRatioParameter.Value.Value /
    313 //                          (MaxSpeedParameter.Value.Value - speedCoefficient * oldCollectedWeight);
    314 //        lastCityIdx = cityIdx;
    315 //        cityIdx = (cityIdx + 1) % tour.Length;
    316 //      }
    317 
    318 //      objectiveValue -= Distance(tsp.Coordinates.CloneAsMatrix(), tour[lastCityIdx], tour[hideoutIdx]) * RentingRatioParameter.Value.Value /
    319 //                        (MaxSpeedParameter.Value.Value - speedCoefficient * collectedWeight);
    320 
    321 //      feasible = collectedWeight <= ksp.KnapsackCapacity.Value;
    322 //      if (!feasible) objectiveValue = infeasibleBaseLine - collectedWeight;
    323 
    324 //      return objectiveValue;
    325 //    }
    326 
    327 //    private double Distance(double[,] coords, int fromIdx, int toIdx) {
    328 //      double fromX = coords[fromIdx, 0], fromY = coords[fromIdx, 1],
    329 //             toX = coords[toIdx, 0], toY = coords[toIdx, 1];
    330 //      return (int)Math.Ceiling(Math.Sqrt((toX - fromX) * (toX - fromX) + (toY - fromY) * (toY - fromY)));
    331 //    }
    332 //    #endregion
    333 
    334 //    #region Event Handlers
    335 //    private void MetaSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
    336 //      if (MetaSolverOrchestrationPort.ConnectedPort == null) return;
    337 
    338 //      var node = MetaSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
    339 //      if (node == null) return;
    340 
    341 //      var hook = new HookOperator { Name = "Meta Eval Hook" };
    342 //      hook.Parameters.Add(new LookupParameter<RealVector>("RealVector") { Hidden = true });
    343 //      hook.Parameters.Add(new LookupParameter<DoubleValue>("Quality") { Hidden = true });
    344 //      node.EvalHook = hook;
    345 
    346 //      node.OrchestrationPort.CloneParametersFromPort(MetaSolverOrchestrationPort);
    347 //      node.EvaluationPort.CloneParametersFromPort(MetaSolverEvaluationPort);
    348 //      node.EvaluationPort.ConnectedPort = MetaSolverEvaluationPort;
    349 //    }
    350 
    351 //    private void TspSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
    352 //      if (TspSolverOrchestrationPort.ConnectedPort == null) return;
    353 
    354 //      var node = TspSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
    355 //      if (node == null) return;
    356 
    357 //      var hook = new HookOperator { Name = "TSP Eval Hook" };
    358 //      hook.Parameters.Add(new LookupParameter<Permutation>("TSPTour") { Hidden = true });
    359 //      hook.Parameters.Add(new LookupParameter<DoubleValue>("TSPTourLength") { Hidden = true });
    360 //      node.EvalHook = hook;
    361 
    362 //      node.OrchestrationPort.CloneParametersFromPort(TspSolverOrchestrationPort);
    363 //      node.EvaluationPort.CloneParametersFromPort(TspSolverEvaluationPort);
    364 //      node.EvaluationPort.ConnectedPort = TspSolverEvaluationPort;
    365 //    }
    366 
    367 //    private void KspSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
    368 //      if (KspSolverOrchestrationPort.ConnectedPort == null) return;
    369 
    370 //      var node = KspSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
    371 //      if (node == null) return;
    372 
    373 //      var hook = new HookOperator { Name = "KSP Eval Hook" };
    374 //      hook.Parameters.Add(new LookupParameter<BinaryVector>("KnapsackSolution") { Hidden = true });
    375 //      hook.Parameters.Add(new LookupParameter<DoubleValue>("Quality") { Hidden = true });
    376 //      node.EvalHook = hook;
    377 
    378 //      node.OrchestrationPort.CloneParametersFromPort(KspSolverOrchestrationPort);
    379 //      node.EvaluationPort.CloneParametersFromPort(KspSolverEvaluationPort);
    380 //      node.EvaluationPort.ConnectedPort = KspSolverEvaluationPort;
    381 //    }
    382 //    #endregion
    383 //  }
    384 //}
     1#region License Information
     2/* HeuristicLab
     3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     4 *
     5 * This file is part of HeuristicLab.
     6 *
     7 * HeuristicLab is free software: you can redistribute it and/or modify
     8 * it under the terms of the GNU General Public License as published by
     9 * the Free Software Foundation, either version 3 of the License, or
     10 * (at your option) any later version.
     11 *
     12 * HeuristicLab is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU General Public License
     18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
     19 */
     20#endregion
     21
     22using System;
     23using System.Collections.Generic;
     24using System.Linq;
     25using System.Threading;
     26using HeuristicLab.Common;
     27using HeuristicLab.Core;
     28using HeuristicLab.Core.Networks;
     29using HeuristicLab.Data;
     30using HeuristicLab.Encodings.BinaryVectorEncoding;
     31using HeuristicLab.Encodings.PermutationEncoding;
     32using HeuristicLab.Encodings.RealVectorEncoding;
     33using HeuristicLab.Operators;
     34using HeuristicLab.Optimization;
     35using HeuristicLab.Parameters;
     36using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     37using HeuristicLab.Problems.Knapsack;
     38using HeuristicLab.Problems.TravelingSalesman;
     39
     40namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
     41  [Item("TtpOrchestratorNode3", "Orchestrator for TTP optimization network version 3.")]
     42  [StorableClass]
     43  public sealed class TtpOrchestratorNode3 : OrchestratorNode {
     44    #region Constants
     45    private const string TspParameterName = "TSP";
     46    private const string KspParameterName = "KSP";
     47    private const string AvailabilityParameterName = "Availability";
     48    private const string MinSpeedParameterName = "MinSpeed";
     49    private const string MaxSpeedParameterName = "MaxSpeed";
     50    private const string RentingRatioParameterName = "RentingRatio";
     51    private const string IterationsParameterName = "Iterations";
     52    private const string MetaSolverName = "MetaSolver";
     53    private const string TspSolverName = "TspSolver";
     54    private const string KspSolverName = "KspSolver";
     55    #endregion
     56
     57    private ResultCollection tspResults, kspResults;
     58
     59    private CancellationTokenSource cts;
     60
     61    #region Parameters
     62    public IValueParameter<IntValue> IterationsParameter {
     63      get { return (IValueParameter<IntValue>)Parameters[IterationsParameterName]; }
     64    }
     65
     66    public IValueParameter<TravelingSalesmanProblem> TspParameter {
     67      get { return (IValueParameter<TravelingSalesmanProblem>)Parameters[TspParameterName]; }
     68    }
     69
     70    public IValueParameter<BinaryKnapsackProblem> KspParameter {
     71      get { return (IValueParameter<BinaryKnapsackProblem>)Parameters[KspParameterName]; }
     72    }
     73
     74    public IValueParameter<IntArray> AvailabilityParameter {
     75      get { return (IValueParameter<IntArray>)Parameters[AvailabilityParameterName]; }
     76    }
     77
     78    public IValueParameter<DoubleValue> MinSpeedParameter {
     79      get { return (IValueParameter<DoubleValue>)Parameters[MinSpeedParameterName]; }
     80    }
     81
     82    public IValueParameter<DoubleValue> MaxSpeedParameter {
     83      get { return (IValueParameter<DoubleValue>)Parameters[MaxSpeedParameterName]; }
     84    }
     85
     86    public IValueParameter<DoubleValue> RentingRatioParameter {
     87      get { return (IValueParameter<DoubleValue>)Parameters[RentingRatioParameterName]; }
     88    }
     89    #endregion
     90
     91    #region Ports
     92    public IMessagePort MetaSolverOrchestrationPort {
     93      get { return (IMessagePort)Ports[MetaSolverName + OrchestrationPortNameSuffix]; }
     94    }
     95
     96    public IMessagePort MetaSolverEvaluationPort {
     97      get { return (IMessagePort)Ports[MetaSolverName + EvaluationPortNameSuffix]; }
     98    }
     99
     100    public IMessagePort TspSolverOrchestrationPort {
     101      get { return (IMessagePort)Ports[TspSolverName + OrchestrationPortNameSuffix]; }
     102    }
     103
     104    public IMessagePort TspSolverEvaluationPort {
     105      get { return (IMessagePort)Ports[TspSolverName + EvaluationPortNameSuffix]; }
     106    }
     107
     108    public IMessagePort KspSolverOrchestrationPort {
     109      get { return (IMessagePort)Ports[KspSolverName + OrchestrationPortNameSuffix]; }
     110    }
     111
     112    public IMessagePort KspSolverEvaluationPort {
     113      get { return (IMessagePort)Ports[KspSolverName + EvaluationPortNameSuffix]; }
     114    }
     115    #endregion
     116
     117    [StorableConstructor]
     118    private TtpOrchestratorNode3(bool deserializing) : base(deserializing) { }
     119    private TtpOrchestratorNode3(TtpOrchestratorNode3 original, Cloner cloner) : base(original, cloner) {
     120      RegisterEvents();
     121    }
     122    public TtpOrchestratorNode3() : this("TtpOrchestratorNode3") { }
     123    public TtpOrchestratorNode3(string name) : base(name) {
     124      #region Configure Parameters
     125      Parameters.Add(new ValueParameter<IntValue>(IterationsParameterName, new IntValue(20)));
     126      Parameters.Add(new ValueParameter<TravelingSalesmanProblem>(TspParameterName, new TravelingSalesmanProblem()));
     127      Parameters.Add(new ValueParameter<BinaryKnapsackProblem>(KspParameterName, new BinaryKnapsackProblem()));
     128      Parameters.Add(new ValueParameter<IntArray>(AvailabilityParameterName));
     129      Parameters.Add(new ValueParameter<DoubleValue>(MinSpeedParameterName, new DoubleValue(0.1)));
     130      Parameters.Add(new ValueParameter<DoubleValue>(MaxSpeedParameterName, new DoubleValue(1.0)));
     131      Parameters.Add(new ValueParameter<DoubleValue>(RentingRatioParameterName, new DoubleValue(0.5)));
     132      #endregion
     133
     134      #region Configure Ports
     135      AddOrchestrationPort<VariegationProblem>(MetaSolverName);
     136      AddEvaluationPort<RealVector>(MetaSolverName, "RealVector", "Quality");
     137      AddOrchestrationPort<TravelingSalesmanProblem>(TspSolverName);
     138      AddEvaluationPort<Permutation>(TspSolverName, "TSPTour", "TSPTourLength");
     139      AddOrchestrationPort<BinaryKnapsackProblem>(KspSolverName);
     140      AddEvaluationPort<BinaryVector>(KspSolverName, "KnapsackSolution", "Quality");
     141
     142      RegisterEvents();
     143      #endregion
     144    }
     145
     146    public override IDeepCloneable Clone(Cloner cloner) {
     147      return new TtpOrchestratorNode3(this, cloner);
     148    }
     149
     150    [StorableHook(HookType.AfterDeserialization)]
     151    private void AfterDeserialization() {
     152      RegisterEvents();
     153    }
     154
     155    private void RegisterEvents() {
     156      MetaSolverOrchestrationPort.ConnectedPortChanged += MetaSolverOrchestrationPort_ConnectedPortChanged;
     157      TspSolverOrchestrationPort.ConnectedPortChanged += TspSolverOrchestrationPort_ConnectedPortChanged;
     158      KspSolverOrchestrationPort.ConnectedPortChanged += KspSolverOrchestrationPort_ConnectedPortChanged;
     159    }
     160
     161    public override void Prepare() {
     162      Results.Clear();
     163
     164      var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
     165      metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.QualityAdaption);
     166      var problem = new VariegationProblem();
     167      problem.Encoding.Length = KspParameter.Value.Length + TspParameter.Value.Coordinates.Rows * 2;
     168      problem.Encoding.Bounds = new DoubleMatrix(new[,] { { -1.0, 1.0 } });
     169      metaMsg["Problem"] = problem;
     170      MetaSolverOrchestrationPort.SendMessage(metaMsg);
     171    }
     172
     173    public override void Start() {
     174      cts = new CancellationTokenSource();
     175
     176      try {
     177        var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
     178        metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
     179        MetaSolverOrchestrationPort.SendMessage(metaMsg);
     180      } catch (Exception e) { }
     181    }
     182
     183    public override void Pause() {
     184      cts.Cancel();
     185
     186      var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
     187      metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Pause);
     188      MetaSolverOrchestrationPort.SendMessage(metaMsg);
     189
     190      var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
     191      tspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
     192      TspSolverOrchestrationPort.SendMessage(tspMsg);
     193
     194      var kspMsg = KspSolverOrchestrationPort.PrepareMessage();
     195      kspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
     196      KspSolverOrchestrationPort.SendMessage(kspMsg);
     197    }
     198
     199    public override void Stop() {
     200      cts.Cancel();
     201
     202      var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
     203      metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
     204      MetaSolverOrchestrationPort.SendMessage(metaMsg);
     205
     206      var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
     207      tspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
     208      TspSolverOrchestrationPort.SendMessage(tspMsg);
     209
     210      var kspMsg = KspSolverOrchestrationPort.PrepareMessage();
     211      kspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
     212      KspSolverOrchestrationPort.SendMessage(kspMsg);
     213    }
     214
     215    protected override void ProcessMessage(IMessage message, IMessagePort port, CancellationToken token) {
     216      var messageActions = new Dictionary<IMessagePort, Action<IMessage>>();
     217      messageActions.Add(MetaSolverOrchestrationPort, MetaSolverOrchestrationPortMessage);
     218      messageActions.Add(MetaSolverEvaluationPort, MetaSolverEvaluationPortMessage);
     219      messageActions.Add(TspSolverOrchestrationPort, TspSolverOrchestrationPortMessage);
     220      messageActions.Add(TspSolverEvaluationPort, TspSolverEvaluationPortMessage);
     221      messageActions.Add(KspSolverOrchestrationPort, KspSolverOrchestrationPortMessage);
     222      messageActions.Add(KspSolverEvaluationPort, KspSolverEvaluationPortMessage);
     223
     224      messageActions[port](message);
     225
     226      base.ProcessMessage(message, port, token);
     227    }
     228
     229    #region MetaSolver Message Handling
     230    private void MetaSolverOrchestrationPortMessage(IMessage message) { }
     231
     232    private void MetaSolverEvaluationPortMessage(IMessage message) {
     233      var factors = (RealVector)message["RealVector"];
     234      int fi = 0;
     235
     236      var ksp = (BinaryKnapsackProblem)KspParameter.Value.Clone();
     237      while (fi < ksp.Values.Length) {
     238        ksp.Values[fi] = (int)Math.Ceiling(ksp.Values[fi] * factors[fi]);
     239        ++fi;
     240      }
     241
     242      var kspMsg = KspSolverOrchestrationPort.PrepareMessage();
     243      kspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.Start);
     244      kspMsg["Problem"] = ksp;
     245      KspSolverOrchestrationPort.SendMessage(kspMsg);
     246      cts.Token.ThrowIfCancellationRequested();
     247
     248      var bestKspSolution = (BinaryVector)kspResults["Best Solution"].Value;
     249      var kspCapacity = (IntValue)KspParameter.Value.KnapsackCapacity.Clone();
     250      var kspPenalty = new DoubleValue(0.0);
     251      var kspWeights = (IntArray)KspParameter.Value.Weights.Clone();
     252      var kspValues = (IntArray)KspParameter.Value.Values.Clone();
     253      var bestKspQuality = KnapsackEvaluator.Apply(bestKspSolution, kspCapacity, kspPenalty, kspWeights, kspValues).Quality;
     254      var loot = new KnapsackSolution(bestKspSolution, bestKspQuality, kspCapacity, kspWeights, kspValues);
     255
     256      var tsp = (TravelingSalesmanProblem)TspParameter.Value.Clone();
     257      for (int j = 0; j < tsp.Coordinates.Rows; j++) {
     258        tsp.Coordinates[j, 0] = (int)Math.Ceiling(tsp.Coordinates[j, 0] * factors[fi + j * 2]);
     259        tsp.Coordinates[j, 1] = (int)Math.Ceiling(tsp.Coordinates[j, 1] * factors[fi + j * 2 + 1]);
     260      }
     261
     262      var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
     263      tspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.Start);
     264      var tpp = new TourProfitProblem {
     265        Tsp = (TravelingSalesmanProblem)TspParameter.Value.Clone(),
     266        Ksp = (BinaryKnapsackProblem)KspParameter.Value.Clone(),
     267        FixedKspSolution = bestKspSolution,
     268        Availability = AvailabilityParameter.Value.ToArray(),
     269        RentingRatio = RentingRatioParameter.Value.Value,
     270        MinSpeed = MinSpeedParameter.Value.Value,
     271        MaxSpeed = MaxSpeedParameter.Value.Value
     272      };
     273      tpp.Encoding.Length = TspParameter.Value.Coordinates.Rows;
     274      tspMsg["Problem"] = tpp;
     275      TspSolverOrchestrationPort.SendMessage(tspMsg);
     276      cts.Token.ThrowIfCancellationRequested();
     277
     278      var bestTspSolution = (Permutation)tspResults["Best TSP Solution"].Value;
     279      var coordinates = (DoubleMatrix)TspParameter.Value.Coordinates.Clone();
     280      var tour = new PathTSPTour(coordinates, bestTspSolution, new DoubleValue(TSPCoordinatesPathEvaluator.Apply(new TSPEuclideanPathEvaluator(), coordinates, bestTspSolution)));
     281
     282      #region Analyze
     283      double objectiveValue = TtpUtils.EvaluateTtp(TspParameter.Value, tour.Permutation.ToArray(), KspParameter.Value, loot.BinaryVector.ToArray(),
     284        AvailabilityParameter.Value.ToArray(), RentingRatioParameter.Value.Value, MinSpeedParameter.Value.Value, MaxSpeedParameter.Value.Value);
     285      ((DoubleValue)message["Quality"]).Value = objectiveValue;
     286
     287      IResult bestQuality;
     288      if (!Results.TryGetValue("Best TTP Quality", out bestQuality)) {
     289        Results.Add(new Result("Best TTP Quality", new DoubleValue(objectiveValue)));
     290        Results.Add(new Result("Best Tour", tour));
     291        Results.Add(new Result("Best Loot", loot));
     292      } else if (((DoubleValue)bestQuality.Value).Value < objectiveValue) {
     293        ((DoubleValue)bestQuality.Value).Value = objectiveValue;
     294        Results["Best Tour"].Value = tour;
     295        Results["Best Loot"].Value = loot;
     296      }
     297      #endregion
     298    }
     299    #endregion
     300
     301    #region TspSolver Message Handling
     302    private void TspSolverOrchestrationPortMessage(IMessage message) {
     303      var results = (ResultCollection)message["Results"];
     304      if (results.ContainsKey("Best TSP Solution")) {
     305        tspResults = results;
     306      }
     307    }
     308
     309    private void TspSolverEvaluationPortMessage(IMessage message) { }
     310    #endregion
     311
     312    #region KspSolver Message Handling
     313    private void KspSolverOrchestrationPortMessage(IMessage message) {
     314      var results = (ResultCollection)message["Results"];
     315      if (results.ContainsKey("Best Solution")) {
     316        kspResults = results;
     317      }
     318    }
     319
     320    private void KspSolverEvaluationPortMessage(IMessage message) { }
     321    #endregion
     322
     323    #region Event Handlers
     324    private void MetaSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
     325      if (MetaSolverOrchestrationPort.ConnectedPort == null) return;
     326
     327      var node = MetaSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
     328      if (node == null) return;
     329
     330      var hook = new HookOperator { Name = "Meta Eval Hook" };
     331      hook.Parameters.Add(new LookupParameter<RealVector>("RealVector") { Hidden = true });
     332      hook.Parameters.Add(new LookupParameter<DoubleValue>("Quality") { Hidden = true });
     333      node.EvalHook = hook;
     334
     335      node.OrchestrationPort.CloneParametersFromPort(MetaSolverOrchestrationPort);
     336      node.EvaluationPort.CloneParametersFromPort(MetaSolverEvaluationPort);
     337      node.EvaluationPort.ConnectedPort = MetaSolverEvaluationPort;
     338    }
     339
     340    private void TspSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
     341      if (TspSolverOrchestrationPort.ConnectedPort == null) return;
     342
     343      var node = TspSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
     344      if (node == null) return;
     345
     346      var hook = new HookOperator { Name = "TSP Eval Hook" };
     347      hook.Parameters.Add(new LookupParameter<Permutation>("TSPTour") { Hidden = true });
     348      hook.Parameters.Add(new LookupParameter<DoubleValue>("TSPTourLength") { Hidden = true });
     349      node.EvalHook = hook;
     350
     351      node.OrchestrationPort.CloneParametersFromPort(TspSolverOrchestrationPort);
     352      node.EvaluationPort.CloneParametersFromPort(TspSolverEvaluationPort);
     353      node.EvaluationPort.ConnectedPort = TspSolverEvaluationPort;
     354    }
     355
     356    private void KspSolverOrchestrationPort_ConnectedPortChanged(object sender, EventArgs e) {
     357      if (KspSolverOrchestrationPort.ConnectedPort == null) return;
     358
     359      var node = KspSolverOrchestrationPort.ConnectedPort.Parent as OrchestratedAlgorithmNode;
     360      if (node == null) return;
     361
     362      var hook = new HookOperator { Name = "KSP Eval Hook" };
     363      hook.Parameters.Add(new LookupParameter<BinaryVector>("KnapsackSolution") { Hidden = true });
     364      hook.Parameters.Add(new LookupParameter<DoubleValue>("Quality") { Hidden = true });
     365      node.EvalHook = hook;
     366
     367      node.OrchestrationPort.CloneParametersFromPort(KspSolverOrchestrationPort);
     368      node.EvaluationPort.CloneParametersFromPort(KspSolverEvaluationPort);
     369      node.EvaluationPort.ConnectedPort = KspSolverEvaluationPort;
     370    }
     371    #endregion
     372  }
     373}
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization.TravelingThief/3.3/TtpUtils.cs

    r14598 r14601  
    33using HeuristicLab.Problems.TravelingSalesman;
    44
    5 namespace HeuristicLab.Networks.IntegratedOptimization {
     5namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
    66  public static class TtpUtils {
    77    public static double EvaluateTtp(TravelingSalesmanProblem tsp, int[] tour, BinaryKnapsackProblem ksp, bool[] loot, int[] availability, double rentingRatio, double minSpeed, double maxSpeed) {
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization/3.3/HeuristicLab.Networks.IntegratedOptimization-3.3.csproj

    r14586 r14601  
    226226  </ItemGroup>
    227227  <ItemGroup>
    228     <Compile Include="Problems\BinaryKnapsackProblem.cs" />
    229228    <Compile Include="IOrchestratorNode.cs" />
    230229    <Compile Include="OrchestratedAlgorithmNode.cs" />
    231     <Compile Include="OrchestrationSystem.cs" />
     230    <Compile Include="OrchestrationMessage.cs" />
    232231    <Compile Include="OrchestratorNode.cs" />
    233     <Compile Include="Problems\LootProfitProblem.cs" />
    234     <Compile Include="Problems\TourProfitProblem.cs" />
    235     <Compile Include="Problems\VariegationProblem.cs" />
    236     <Compile Include="SolveResponseMessage.cs" />
    237     <Compile Include="SolveRequestMessage.cs" />
    238     <Compile Include="TtpImporter.cs" />
     232    <Compile Include="VariegationProblem.cs" />
    239233    <Compile Include="TtpNetwork.cs" />
    240234    <Compile Include="TtpNetwork2.cs" />
    241     <Compile Include="TtpNetwork3.cs" />
    242235    <Compile Include="TtpNetwork4.cs" />
    243     <Compile Include="TtpNetwork5.cs" />
    244     <Compile Include="TtpOrchestratorNode3.cs" />
    245236    <Compile Include="TtpOrchestratorNode1.cs" />
    246237    <Compile Include="TtpOrchestratorNode2.cs" />
    247238    <Compile Include="TtpOrchestratorNode4.cs" />
    248     <Compile Include="TtpOrchestratorNode5.cs" />
    249     <Compile Include="TtpUtils.cs" />
    250     <Compile Include="Utils.cs" />
    251239    <None Include="Plugin.cs.frame" />
    252240    <None Include="Properties\AssemblyInfo.cs.frame" />
    253     <Compile Include="ActionMessage.cs" />
    254     <Compile Include="InitializeResponseMessage.cs" />
    255     <Compile Include="InitializeRequestMessage.cs" />
    256     <Compile Include="MessageAction.cs" />
    257241    <Compile Include="Plugin.cs" />
    258242    <Compile Include="Properties\AssemblyInfo.cs" />
  • branches/OptimizationNetworks/HeuristicLab.Networks.IntegratedOptimization/3.3/OrchestratedAlgorithmNode.cs

    r14598 r14601  
    108108                    foreach (var analyzer in multiAnalyzer.Operators) {
    109109                      bool checkedState;
    110                       checkedStates.TryGetValue(analyzer.GetType(), out checkedState);
     110                      if (!checkedStates.TryGetValue(analyzer.GetType(), out checkedState))
     111                        checkedState = analyzer.EnabledByDefault;
    111112                      multiAnalyzer.Operators.SetItemCheckedState(analyzer, checkedState);
    112113                    }
Note: See TracChangeset for help on using the changeset viewer.