Changeset 14496
- Timestamp:
- 12/16/16 17:10:05 (8 years ago)
- Location:
- branches/MemPRAlgorithm
- Files:
-
- 12 edited
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Binary/BinaryMemPR.cs
r14456 r14496 66 66 67 67 protected override double Dist(ISingleObjectiveSolutionScope<BinaryVector> a, ISingleObjectiveSolutionScope<BinaryVector> b) { 68 var len = a.Solution.Length; 69 var acode = a.Solution; 70 var bcode = b.Solution; 71 var hamming = 0; 72 for (var i = 0; i < len; i++) 73 if (acode[i] != bcode[i]) hamming++; 74 return hamming / (double)len; 68 return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution); 75 69 } 76 70 -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/HeuristicLab.Algorithms.MemPR-3.3.csproj
r14492 r14496 114 114 <Compile Include="Permutation\LocalSearch\StaticAPI\Exhaustive2Opt.cs" /> 115 115 <Compile Include="Permutation\LocalSearch\StaticAPI\ExhaustiveSwap2.cs" /> 116 <Compile Include="Permutation\SolutionModel\Univariate\BiasedModelTrainer.cs" /> 116 117 <Compile Include="Permutation\SolutionModel\Univariate\StaticAPI\Trainer.cs" /> 117 118 <Compile Include="Permutation\SolutionModel\Univariate\UnbiasedModelTrainer.cs" /> -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/LinearLinkage/LinearLinkageMemPR.cs
r14492 r14496 26 26 using HeuristicLab.Algorithms.MemPR.Interfaces; 27 27 using HeuristicLab.Algorithms.MemPR.Util; 28 using HeuristicLab.Collections;29 28 using HeuristicLab.Common; 30 29 using HeuristicLab.Core; … … 68 67 69 68 protected override double Dist(ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> a, ISingleObjectiveSolutionScope<Encodings.LinearLinkageEncoding.LinearLinkage> b) { 70 return HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution);69 return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution); 71 70 } 72 71 -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/MemPRAlgorithm.cs
r14477 r14496 230 230 while (Context.PopulationCount < 2) { 231 231 var child = Create(token); 232 Context. HcSteps += HillClimb(child, token);233 Context.AddToPopulation(child);234 Analyze(token);232 Context.LocalSearchEvaluations += HillClimb(child, token); 233 if (Replace(child, token) >= 0) 234 Analyze(token); 235 235 token.ThrowIfCancellationRequested(); 236 236 if (Terminate()) return; 237 237 } 238 Context. HcSteps /= 2;238 Context.LocalSearchEvaluations /= 2; 239 239 Context.Initialized = true; 240 240 } … … 262 262 int replPos = -1; 263 263 264 if (Context.Random.NextDouble() > parentDist ) {264 if (Context.Random.NextDouble() > parentDist * parentDist) { 265 265 offspring = BreedAndImprove(p1, p2, token); 266 266 replPos = Replace(offspring, token); … … 271 271 } 272 272 273 if (Context.Random.NextDouble() < parentDist) {273 if (Context.Random.NextDouble() < Math.Sqrt(parentDist)) { 274 274 offspring = RelinkAndImprove(p1, p2, token); 275 275 replPos = Replace(offspring, token); … … 299 299 offspring = (ISingleObjectiveSolutionScope<TSolution>)Context.AtPopulation(Context.Random.Next(Context.PopulationCount)).Clone(); 300 300 Mutate(offspring, token); 301 PerformTabuWalk(offspring, Context. HcSteps, token);301 PerformTabuWalk(offspring, Context.LocalSearchEvaluations, token); 302 302 replPos = Replace(offspring, token); 303 303 if (replPos >= 0) { … … 318 318 Results.Add(new Result("Iterations", new IntValue(Context.Iterations))); 319 319 else ((IntValue)res.Value).Value = Context.Iterations; 320 if (!Results.TryGetValue(" HcSteps", out res))321 Results.Add(new Result(" HcSteps", new IntValue(Context.HcSteps)));322 else ((IntValue)res.Value).Value = Context. HcSteps;320 if (!Results.TryGetValue("LocalSearch Evaluations", out res)) 321 Results.Add(new Result("LocalSearch Evaluations", new IntValue(Context.LocalSearchEvaluations))); 322 else ((IntValue)res.Value).Value = Context.LocalSearchEvaluations; 323 323 if (!Results.TryGetValue("ByBreeding", out res)) 324 324 Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding))); -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/MemPRContext.cs
r14450 r14496 102 102 103 103 [Storable] 104 private IValueParameter<IntValue> hcSteps;105 public int HcSteps {106 get { return hcSteps.Value.Value; }107 set { hcSteps.Value.Value = value; }104 private IValueParameter<IntValue> localSearchEvaluations; 105 public int LocalSearchEvaluations { 106 get { return localSearchEvaluations.Value.Value; } 107 set { localSearchEvaluations.Value.Value = value; } 108 108 } 109 109 … … 196 196 bestQuality = cloner.Clone(original.bestQuality); 197 197 bestSolution = cloner.Clone(original.bestSolution); 198 hcSteps = cloner.Clone(original.hcSteps);198 localSearchEvaluations = cloner.Clone(original.localSearchEvaluations); 199 199 byBreeding = cloner.Clone(original.byBreeding); 200 200 byRelinking = cloner.Clone(original.byRelinking); … … 219 219 Parameters.Add(bestQuality = new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(double.NaN))); 220 220 Parameters.Add(bestSolution = new ValueParameter<TSolution>("BestSolution")); 221 Parameters.Add( hcSteps = new ValueParameter<IntValue>("HcSteps", new IntValue(0)));221 Parameters.Add(localSearchEvaluations = new ValueParameter<IntValue>("LocalSearchEvaluations", new IntValue(0))); 222 222 Parameters.Add(byBreeding = new ValueParameter<IntValue>("ByBreeding", new IntValue(0))); 223 223 Parameters.Add(byRelinking = new ValueParameter<IntValue>("ByRelinking", new IntValue(0))); -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/BiasedModelTrainer.cs
r14487 r14496 24 24 using HeuristicLab.Common; 25 25 using HeuristicLab.Core; 26 using HeuristicLab.Data; 26 27 using HeuristicLab.Encodings.PermutationEncoding; 27 28 using HeuristicLab.Optimization; 29 using HeuristicLab.Parameters; 28 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 31 30 32 namespace HeuristicLab.Algorithms.MemPR.Permutation.SolutionModel.Univariate { 31 [Item(" Unbiased Univariate Model Trainer (Permutation)", "", ExcludeGenericTypeInfo = true)]33 [Item("Biased Univariate Model Trainer (Permutation)", "", ExcludeGenericTypeInfo = true)] 32 34 [StorableClass] 33 public class UniasedModelTrainer<TContext> :NamedItem, ISolutionModelTrainer<TContext>35 public class BiasedModelTrainer<TContext> : ParameterizedNamedItem, ISolutionModelTrainer<TContext> 34 36 where TContext : IPopulationBasedHeuristicAlgorithmContext<SingleObjectiveBasicProblem<PermutationEncoding>, Encodings.PermutationEncoding.Permutation>, 35 37 ISolutionModelContext<Encodings.PermutationEncoding.Permutation> { 36 38 39 [Storable] 40 private IValueParameter<EnumValue<ModelBiasOptions>> modelBiasParameter; 41 public ModelBiasOptions ModelBias { 42 get { return modelBiasParameter.Value.Value; } 43 set { modelBiasParameter.Value.Value = value; } 44 } 45 37 46 [StorableConstructor] 38 protected UniasedModelTrainer(bool deserializing) : base(deserializing) { } 39 protected UniasedModelTrainer(UniasedModelTrainer<TContext> original, Cloner cloner) : base(original, cloner) { } 40 public UniasedModelTrainer() { 41 Name = ItemName; 42 Description = ItemDescription; 47 protected BiasedModelTrainer(bool deserializing) : base(deserializing) { } 48 protected BiasedModelTrainer(BiasedModelTrainer<TContext> original, Cloner cloner) 49 : base(original, cloner) { 50 modelBiasParameter = cloner.Clone(original.modelBiasParameter); 51 } 52 public BiasedModelTrainer() { 53 Parameters.Add(modelBiasParameter = new ValueParameter<EnumValue<ModelBiasOptions>>("Model Bias", "What kind of bias towards better individuals is chosen.")); 43 54 } 44 55 45 56 public override IDeepCloneable Clone(Cloner cloner) { 46 return new UniasedModelTrainer<TContext>(this, cloner);57 return new BiasedModelTrainer<TContext>(this, cloner); 47 58 } 48 59 49 60 public void TrainModel(TContext context) { 50 context.Model = Trainer.Train (context.Random, context.Population.Select(x => x.Solution).ToList(), context.Problem.Encoding.Length);61 context.Model = Trainer.TrainBiased(ModelBias, context.Random, context.Problem.Maximization, context.Population.Select(x => x.Solution).ToList(), context.Population.Select(x => x.Fitness).ToList(), context.Problem.Encoding.Length); 51 62 } 52 63 } -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/StaticAPI/Trainer.cs
r14450 r14496 27 27 28 28 namespace HeuristicLab.Algorithms.MemPR.Permutation.SolutionModel.Univariate { 29 public enum ModelBiasOptions { Rank, Fitness } 30 29 31 public static class Trainer { 30 public static ISolutionModel<Encodings.PermutationEncoding.Permutation> Train (IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {32 public static ISolutionModel<Encodings.PermutationEncoding.Permutation> TrainUnbiased(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) { 31 33 ISolutionModel<Encodings.PermutationEncoding.Permutation> model; 32 34 switch (pop[0].PermutationType) { 33 35 case PermutationTypes.Absolute: 34 model = UnivariateAbsoluteModel.Create (random, pop, N);36 model = UnivariateAbsoluteModel.CreateUnbiased(random, pop, N); 35 37 break; 36 38 case PermutationTypes.RelativeDirected: … … 44 46 return model; 45 47 } 48 49 public static ISolutionModel<Encodings.PermutationEncoding.Permutation> TrainBiased(ModelBiasOptions modelBias, IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> pop, IList<double> qualities, int N) { 50 if (pop.Count != qualities.Count) throw new ArgumentException("Unequal length of population and qualities list."); 51 ISolutionModel<Encodings.PermutationEncoding.Permutation> model; 52 switch (pop[0].PermutationType) { 53 case PermutationTypes.Absolute: 54 if (modelBias == ModelBiasOptions.Rank) 55 model = UnivariateAbsoluteModel.CreateWithRankBias(random, maximization, pop, qualities, N); 56 else if (modelBias == ModelBiasOptions.Fitness) 57 model = UnivariateAbsoluteModel.CreateWithFitnessBias(random, maximization, pop, qualities, N); 58 else throw new ArgumentException(string.Format("Bias type {0} is not supported.", modelBias)); 59 break; 60 case PermutationTypes.RelativeDirected: 61 if (modelBias == ModelBiasOptions.Rank) 62 model = UnivariateRelativeModel.CreateDirectedWithRankBias(random, maximization, pop, qualities, N); 63 else if (modelBias == ModelBiasOptions.Fitness) 64 model = UnivariateRelativeModel.CreateDirectedWithFitnessBias(random, maximization, pop, qualities, N); 65 else throw new ArgumentException(string.Format("Bias type {0} is not supported.", modelBias)); 66 break; 67 case PermutationTypes.RelativeUndirected: 68 if (modelBias == ModelBiasOptions.Rank) 69 model = UnivariateRelativeModel.CreateUndirectedWithRankBias(random, maximization, pop, qualities, N); 70 else if (modelBias == ModelBiasOptions.Fitness) 71 model = UnivariateRelativeModel.CreateUndirectedWithFitnessBias(random, maximization, pop, qualities, N); 72 else throw new ArgumentException(string.Format("Bias type {0} is not supported.", modelBias)); 73 break; 74 default: throw new ArgumentException(string.Format("unknown permutation type {0}", pop[0].PermutationType)); 75 } 76 return model; 77 } 46 78 } 47 79 } -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/UnbiasedModelTrainer.cs
r14450 r14496 21 21 22 22 using System.Linq; 23 using HeuristicLab.Algorithms.MemPR.Binary.SolutionModel.Univariate; 23 24 using HeuristicLab.Algorithms.MemPR.Interfaces; 24 25 using HeuristicLab.Common; … … 31 32 [Item("Unbiased Univariate Model Trainer (Permutation)", "", ExcludeGenericTypeInfo = true)] 32 33 [StorableClass] 33 public class Un iasedModelTrainer<TContext> : NamedItem, ISolutionModelTrainer<TContext>34 public class UnbiasedModelTrainer<TContext> : NamedItem, ISolutionModelTrainer<TContext> 34 35 where TContext : IPopulationBasedHeuristicAlgorithmContext<SingleObjectiveBasicProblem<PermutationEncoding>, Encodings.PermutationEncoding.Permutation>, 35 36 ISolutionModelContext<Encodings.PermutationEncoding.Permutation> { 36 37 37 38 [StorableConstructor] 38 protected Un iasedModelTrainer(bool deserializing) : base(deserializing) { }39 protected Un iasedModelTrainer(UniasedModelTrainer<TContext> original, Cloner cloner) : base(original, cloner) { }40 public Un iasedModelTrainer() {39 protected UnbiasedModelTrainer(bool deserializing) : base(deserializing) { } 40 protected UnbiasedModelTrainer(UnbiasedModelTrainer<TContext> original, Cloner cloner) : base(original, cloner) { } 41 public UnbiasedModelTrainer() { 41 42 Name = ItemName; 42 43 Description = ItemDescription; … … 44 45 45 46 public override IDeepCloneable Clone(Cloner cloner) { 46 return new Un iasedModelTrainer<TContext>(this, cloner);47 return new UnbiasedModelTrainer<TContext>(this, cloner); 47 48 } 48 49 49 50 public void TrainModel(TContext context) { 50 context.Model = Trainer.Train (context.Random, context.Population.Select(x => x.Solution).ToList(), context.Problem.Encoding.Length);51 context.Model = Trainer.TrainUnbiased(context.Random, context.Population.Select(x => x.Solution).ToList(), context.Problem.Encoding.Length); 51 52 } 52 53 } -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/UnivariateAbsoluteModel.cs
r14450 r14496 20 20 #endregion 21 21 22 using System; 22 23 using System.Collections.Generic; 23 24 using System.Linq; … … 35 36 public sealed class UnivariateAbsoluteModel : Item, ISolutionModel<Encodings.PermutationEncoding.Permutation> { 36 37 [Storable] 37 public IntMatrix Probabilities { get; set; }38 public DoubleMatrix Probabilities { get; set; } 38 39 [Storable] 39 40 public IRandom Random { get; set; } … … 46 47 Random = cloner.Clone(original.Random); 47 48 } 48 public UnivariateAbsoluteModel(IRandom random, int[,] probabilities) {49 Probabilities = new IntMatrix(probabilities);49 public UnivariateAbsoluteModel(IRandom random, double[,] probabilities) { 50 Probabilities = new DoubleMatrix(probabilities); 50 51 Random = random; 51 52 } 52 public UnivariateAbsoluteModel(IRandom random, IntMatrix probabilties) {53 public UnivariateAbsoluteModel(IRandom random, DoubleMatrix probabilties) { 53 54 Probabilities = probabilties; 54 55 Random = random; … … 66 67 for (var i = N - 1; i > 0; i--) { 67 68 var nextIndex = indices[i]; 68 var total = 0.0; 69 for (var v = 0; v < values.Count; v++) { 70 total += Probabilities[nextIndex, values[v]] + 1.0 / N; 71 } 72 var ball = Random.NextDouble() * total; 69 var ball = Random.NextDouble(); 73 70 for (var v = 0; v < values.Count; v++) { 74 71 ball -= Probabilities[nextIndex, values[v]] + 1.0 / N; 75 if (ball <= 0.0) { 76 child[nextIndex] = values[v]; 77 values.RemoveAt(v); 78 indices.RemoveAt(i); 79 break; 80 } 72 if (ball > 0.0) continue; 73 child[nextIndex] = values[v]; 74 values.RemoveAt(v); 75 indices.RemoveAt(i); 76 break; 77 } 78 if (ball > 0) { 79 var v = values.Count - 1; 80 child[nextIndex] = values[v]; 81 values.RemoveAt(v); 82 indices.RemoveAt(i); 81 83 } 82 84 } … … 85 87 } 86 88 87 public static UnivariateAbsoluteModel Create(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) { 88 var model = new int[N, N]; 89 public static UnivariateAbsoluteModel CreateUnbiased(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) { 90 var model = new double[N, N]; 91 var factor = 1.0 / pop.Count; 89 92 for (var i = 0; i < pop.Count; i++) { 90 93 for (var j = 0; j < N; j++) { 91 model[j, pop[i][j]]++; 94 model[j, pop[i][j]] += factor; 95 } 96 } 97 return new UnivariateAbsoluteModel(random, model); 98 } 99 100 public static UnivariateAbsoluteModel CreateWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 101 var popSize = 0; 102 var model = new double[N, N]; 103 104 var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q }); 105 foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) { 106 // from worst to best, worst solution has 1 vote, best solution N votes 107 popSize++; 108 for (var j = 0; j < N; j++) { 109 model[j, ind.Solution[j]] += popSize; 110 } 111 } 112 // normalize to [0;1] 113 var factor = 2.0 / (popSize + 1); 114 for (var i = 0; i < N; i++) { 115 for (var j = 0; j < N; j++) 116 model[i, j] *= factor / popSize; 117 } 118 if (popSize == 0) throw new ArgumentException("Cannot train model from empty population."); 119 return new UnivariateAbsoluteModel(random, model); 120 } 121 122 public static UnivariateAbsoluteModel CreateWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 123 var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization); 124 var factor = 1.0 / proportions.Sum(); 125 var model = new double[N, N]; 126 127 foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) { 128 for (var x = 0; x < model.Length; x++) { 129 for (var j = 0; j < N; j++) { 130 model[j, ind.Solution[j]] += ind.Proportion * factor; 131 } 92 132 } 93 133 } -
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/UnivariateRelativeModel.cs
r14450 r14496 20 20 #endregion 21 21 22 using System; 22 23 using System.Collections.Generic; 23 24 using System.Linq; … … 35 36 public sealed class UnivariateRelativeModel : Item, ISolutionModel<Encodings.PermutationEncoding.Permutation> { 36 37 [Storable] 37 public IntMatrix Probabilities { get; set; }38 public DoubleMatrix Probabilities { get; set; } 38 39 39 40 [Storable] … … 51 52 PermutationType = original.PermutationType; 52 53 } 53 public UnivariateRelativeModel(IRandom random, int[,] probabilities, PermutationTypes permutationType) {54 Probabilities = new IntMatrix(probabilities);54 public UnivariateRelativeModel(IRandom random, double[,] probabilities, PermutationTypes permutationType) { 55 Probabilities = new DoubleMatrix(probabilities); 55 56 Random = random; 56 57 PermutationType = permutationType; 57 58 } 58 public UnivariateRelativeModel(IRandom random, IntMatrix probabilties, PermutationTypes permutationType) {59 public UnivariateRelativeModel(IRandom random, DoubleMatrix probabilties, PermutationTypes permutationType) { 59 60 Probabilities = probabilties; 60 61 Random = random; … … 93 94 94 95 public static UnivariateRelativeModel CreateDirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) { 95 var model = new int[N, N];96 var model = new double[N, N]; 96 97 for (var i = 0; i < pop.Count; i++) { 97 98 for (var j = 0; j < N - 1; j++) { … … 105 106 } 106 107 108 public static UnivariateRelativeModel CreateDirectedWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 109 var popSize = 0; 110 var model = new double[N, N]; 111 112 var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q }); 113 foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) { 114 // from worst to best, worst solution has 1 vote, best solution N votes 115 popSize++; 116 for (var j = 0; j < N - 1; j++) { 117 for (var k = j + 1; k < N; k++) { 118 model[ind.Solution[j], ind.Solution[k]] += popSize; 119 } 120 model[ind.Solution[N - 1], ind.Solution[0]] += popSize; 121 } 122 } 123 if (popSize == 0) throw new ArgumentException("Cannot train model from empty population."); 124 return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected); 125 } 126 127 public static UnivariateRelativeModel CreateDirectedWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 128 var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization); 129 var factor = 1.0 / proportions.Sum(); 130 var model = new double[N, N]; 131 132 foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) { 133 for (var x = 0; x < model.Length; x++) { 134 for (var j = 0; j < N - 1; j++) { 135 for (var k = j + 1; k < N; k++) { 136 model[ind.Solution[j], ind.Solution[k]] += ind.Proportion * factor; 137 } 138 model[ind.Solution[N - 1], ind.Solution[0]] += ind.Proportion * factor; 139 } 140 } 141 } 142 return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected); 143 } 144 107 145 public static UnivariateRelativeModel CreateUndirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) { 108 var model = new int[N, N];146 var model = new double[N, N]; 109 147 for (var i = 0; i < pop.Count; i++) { 110 148 for (var j = 0; j < N - 1; j++) { … … 119 157 return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected); 120 158 } 159 160 public static UnivariateRelativeModel CreateUndirectedWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 161 var popSize = 0; 162 var model = new double[N, N]; 163 164 var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q }); 165 foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) { 166 // from worst to best, worst solution has 1 vote, best solution N votes 167 popSize++; 168 for (var j = 0; j < N - 1; j++) { 169 for (var k = j + 1; k < N; k++) { 170 model[ind.Solution[j], ind.Solution[k]] += popSize; 171 model[ind.Solution[k], ind.Solution[j]] += popSize; 172 } 173 model[ind.Solution[0], ind.Solution[N - 1]] += popSize; 174 model[ind.Solution[N - 1], ind.Solution[0]] += popSize; 175 } 176 } 177 if (popSize == 0) throw new ArgumentException("Cannot train model from empty population."); 178 return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected); 179 } 180 181 public static UnivariateRelativeModel CreateUndirectedWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) { 182 var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization); 183 var factor = 1.0 / proportions.Sum(); 184 var model = new double[N, N]; 185 186 foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) { 187 for (var x = 0; x < model.Length; x++) { 188 for (var j = 0; j < N - 1; j++) { 189 for (var k = j + 1; k < N; k++) { 190 model[ind.Solution[j], ind.Solution[k]] += ind.Proportion * factor; 191 model[ind.Solution[k], ind.Solution[j]] += ind.Proportion * factor; 192 } 193 model[ind.Solution[0], ind.Solution[N - 1]] += ind.Proportion * factor; 194 model[ind.Solution[N - 1], ind.Solution[0]] += ind.Proportion * factor; 195 } 196 } 197 } 198 return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected); 199 } 121 200 } 122 201 } -
branches/MemPRAlgorithm/HeuristicLab.Encodings.LinearLinkageEncoding/3.4/SimilarityCalculators/HammingSimilarityCalculator.cs
r14471 r14496 46 46 public static double CalculateSimilarity(LinearLinkage left, LinearLinkage right) { 47 47 if (left.Length != right.Length) throw new ArgumentException("Comparing encodings of unequal length"); 48 var dist= 0;48 var similarity = 0; 49 49 for (var i = 0; i < left.Length; i++) { 50 if (left[i] != right[i]) dist++;50 if (left[i] == right[i]) similarity++; 51 51 } 52 return dist/ (double)left.Length;52 return similarity / (double)left.Length; 53 53 } 54 54 -
branches/MemPRAlgorithm/HeuristicLab.Problems.GraphColoring/3.3/GraphColoringProblem.cs
r14487 r14496 54 54 get { return fitnessFunctionParameter; } 55 55 } 56 public FitnessFunction FitnessFunction { 57 get { return fitnessFunctionParameter.Value.Value; } 58 set { fitnessFunctionParameter.Value.Value = value; } 59 } 56 60 57 61 [StorableConstructor] … … 66 70 Encoding = new LinearLinkageEncoding("lle"); 67 71 Parameters.Add(adjacencyListParameter = new ValueParameter<IntMatrix>("Adjacency List", "The adjacency list that describes the (symmetric) edges in the graph with nodes from 0 to N-1.")); 68 Parameters.Add(fitnessFunctionParameter = new ValueParameter<EnumValue<FitnessFunction>>("Fitness Function", "The function to use for evaluating the quality of a solution.", new EnumValue<FitnessFunction>(FitnessFunction.P rioritized)));72 Parameters.Add(fitnessFunctionParameter = new ValueParameter<EnumValue<FitnessFunction>>("Fitness Function", "The function to use for evaluating the quality of a solution.", new EnumValue<FitnessFunction>(FitnessFunction.Penalized))); 69 73 70 74 var imat = new IntMatrix(defaultInstance.Length, 2); … … 75 79 Encoding.Length = defaultInstanceNodes; 76 80 AdjacencyListParameter.Value = imat; 77 BestKnownQuality = 7;81 BestKnownQualityParameter.Value = null; 78 82 79 83 InitializeOperators(); … … 112 116 113 117 public override double Evaluate(Individual individual, IRandom random) { 114 var fitFun = FitnessFunctionParameter.Value.Value;115 118 var adjList = adjacencyListParameter.Value; 116 var lle = individual.LinearLinkage(Encoding.Name).ToEndLinks(); // LLE-e encoding uses the highest indexed member as group number117 118 switch ( fitFun) {119 var llee = individual.LinearLinkage(Encoding.Name).ToEndLinks(); // LLE-e encoding uses the highest indexed member as group number 120 121 switch (FitnessFunction) { 119 122 case FitnessFunction.Prioritized: { 120 var conflicts = 0; 121 var colors = lle.Distinct().Count(); 122 for (var r = 0; r < adjList.Rows; r++) { 123 if (lle[adjList[r, 0]] == lle[adjList[r, 1]]) conflicts++; // both nodes are adjacent and have the same color (are in the same group) 124 } 123 var colors = llee.Distinct().Count(); 124 var conflicts = CalculateConflicts(llee); 125 125 // number of conflicts is the integer part of the quality 126 126 // number of colors constitutes the fractional part 127 127 // the number of fractional digits is defined by the maximum number of possible colors (each node its own color) 128 var mag = Math.Pow(10, -(int)Math.Ceiling(Math.Log10(lle .Length)));128 var mag = Math.Pow(10, -(int)Math.Ceiling(Math.Log10(llee.Length))); 129 129 // the value is e.g. 4.03 for 4 conflicts with 3 colors (and less than 100 nodes) 130 130 return conflicts + colors * mag; … … 136 136 // Operations Research 39(3), pp. 378–406. 137 137 // All local optima of this function correspond to legal colorings. 138 var colors = lle.GroupBy(x => x).ToDictionary(x => x.Key, x => new EvaluationHelper() { ColorCount = x.Count() }); 138 // We need to calculate conflicts and nodes per color 139 var colors = llee.GroupBy(x => x).ToDictionary(x => x.Key, x => new EvaluationHelper() { ColorCount = x.Count() }); 139 140 for (var r = 0; r < adjList.Rows; r++) { 140 var color1 = lle [adjList[r, 0]];141 var color2 = lle [adjList[r, 1]];141 var color1 = llee[adjList[r, 0]]; 142 var color2 = llee[adjList[r, 1]]; 142 143 if (color1 == color2) colors[color1].ConflictCount++; 143 144 } 144 145 return 2 * colors.Sum(x => x.Value.ColorCount * x.Value.ConflictCount) - colors.Sum(x => x.Value.ColorCount * x.Value.ColorCount); 145 146 } 146 default: throw new InvalidOperationException(string.Format("Unknown fitness function {0}.", fitFun));147 default: throw new InvalidOperationException(string.Format("Unknown fitness function {0}.", FitnessFunction)); 147 148 } 148 149 } … … 156 157 var orderedIndividuals = individuals.Zip(qualities, (i, q) => new { Individual = i, Quality = q }).OrderBy(z => z.Quality); 157 158 var best = Maximization ? orderedIndividuals.Last().Individual.LinearLinkage(Encoding.Name) : orderedIndividuals.First().Individual.LinearLinkage(Encoding.Name); 158 159 var adjList = AdjacencyListParameter.Value; 159 160 160 var lle = best.ToEndLinks(); 161 var conflicts = 0;162 161 var colors = lle.Distinct().Count(); 163 for (var r = 0; r < adjList.Rows; r++) { 164 if (lle[adjList[r, 0]] == lle[adjList[r, 1]]) conflicts++; // both nodes are adjacent and have the same color (are in the same group) 165 } 162 var conflicts = CalculateConflicts(lle); 166 163 167 164 IResult res; … … 176 173 } 177 174 175 private int CalculateConflicts(int[] llee) { 176 var adjList = AdjacencyListParameter.Value; 177 var conflicts = 0; 178 for (var r = 0; r < adjList.Rows; r++) { 179 if (llee[adjList[r, 0]] == llee[adjList[r, 1]]) conflicts++; // both nodes are adjacent and have the same color (are in the same group) 180 } 181 return conflicts; 182 } 183 178 184 public void Load(GCPData data) { 179 185 Encoding.Length = data.Nodes; 180 186 AdjacencyListParameter.Value = new IntMatrix(data.Adjacencies); 181 if ( FitnessFunctionParameter.Value.Value == FitnessFunction.Prioritized && data.BestKnownColors.HasValue) {187 if (data.BestKnownColors.HasValue && FitnessFunction == FitnessFunction.Prioritized) { 182 188 var mag = Math.Pow(10, -(int)Math.Ceiling(Math.Log10(data.Nodes))); 183 // the value is e.g. 4.03 for 4 conflicts with 3 colors (and less than 100 nodes)189 // the value is e.g. 0.051 for 0 conflicts with 51 colors (and less than 1000 nodes) 184 190 BestKnownQuality = data.BestKnownColors.Value * mag; 191 } else if (data.BestKnownColoring != null && FitnessFunction == FitnessFunction.Prioritized) { 192 var mag = Math.Pow(10, -(int)Math.Ceiling(Math.Log10(data.Nodes))); 193 var colors = data.BestKnownColoring.Distinct().Count(); 194 BestKnownQuality = colors * mag; 195 } else if (data.BestKnownColoring != null && FitnessFunction == FitnessFunction.Penalized) { 196 var colors = data.BestKnownColoring.GroupBy(x => x).Select(x => x.Count()); 197 BestKnownQuality = -colors.Sum(x => x * x); 185 198 } else BestKnownQualityParameter.Value = null; 186 199 Name = data.Name; -
branches/MemPRAlgorithm/HeuristicLab.Problems.Instances/3.3/Types/GCPData.cs
r14471 r14496 48 48 public int[] BestKnownColoring { get; set; } 49 49 /// <summary> 50 /// Optional! The quality value of the <see cref="BestKnownColoring"/> 50 /// Optional! The least amount of colors that would not result in conflicts. 51 /// The amount of colors in <see cref="BestKnownColoring"/> if it is given as well. 51 52 /// </summary> 52 public double? BestKnownColors { get; set; }53 public int? BestKnownColors { get; set; } 53 54 } 54 55 }
Note: See TracChangeset
for help on using the changeset viewer.