Free cookie consent management tool by TermsFeed Policy Generator

source: branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/UnivariateRelativeModel.cs @ 14496

Last change on this file since 14496 was 14496, checked in by abeham, 8 years ago

#2701:

  • Reusing similiarty calculator in BinaryMemPR
  • Fixing distance calculation for linear linkage and LinearLinkageMemPR
  • Small changes to base algorithm
  • Added biased model trainer for permutation (rank and fitness)
  • Fixing best known quality calculation for GCP
File size: 8.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Algorithms.MemPR.Interfaces;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.PermutationEncoding;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Random;
32
33namespace HeuristicLab.Algorithms.MemPR.Permutation.SolutionModel.Univariate {
34  [Item("Univariate solution model (Permutation.Relative)", "")]
35  [StorableClass]
36  public sealed class UnivariateRelativeModel : Item, ISolutionModel<Encodings.PermutationEncoding.Permutation> {
37    [Storable]
38    public DoubleMatrix Probabilities { get; set; }
39
40    [Storable]
41    public IRandom Random { get; set; }
42
43    [Storable]
44    public PermutationTypes PermutationType { get; set; }
45
46    [StorableConstructor]
47    private UnivariateRelativeModel(bool deserializing) : base(deserializing) { }
48    private UnivariateRelativeModel(UnivariateRelativeModel original, Cloner cloner)
49      : base(original, cloner) {
50      Probabilities = cloner.Clone(original.Probabilities);
51      Random = cloner.Clone(original.Random);
52      PermutationType = original.PermutationType;
53    }
54    public UnivariateRelativeModel(IRandom random, double[,] probabilities, PermutationTypes permutationType) {
55      Probabilities = new DoubleMatrix(probabilities);
56      Random = random;
57      PermutationType = permutationType;
58    }
59    public UnivariateRelativeModel(IRandom random, DoubleMatrix probabilties, PermutationTypes permutationType) {
60      Probabilities = probabilties;
61      Random = random;
62      PermutationType = permutationType;
63    }
64
65    public override IDeepCloneable Clone(Cloner cloner) {
66      return new UnivariateRelativeModel(this, cloner);
67    }
68
69    public Encodings.PermutationEncoding.Permutation Sample() {
70      var N = Probabilities.Rows;
71      var next = Random.Next(N);
72      var child = new Encodings.PermutationEncoding.Permutation(PermutationType, N);
73      child[0] = next;
74      var open = Enumerable.Range(0, N).Where(x => x != next).Shuffle(Random).ToList();
75      for (var i = 1; i < N - 1; i++) {
76        var total = 0.0;
77        for (var j = 0; j < open.Count; j++) {
78          total += Probabilities[next, open[j]] + 1.0 / N;
79        }
80        var ball = Random.NextDouble() * total;
81        for (var j = 0; j < open.Count; j++) {
82          ball -= Probabilities[next, open[j]] + 1.0 / N;
83          if (ball <= 0.0) {
84            child[i] = open[j];
85            next = open[j];
86            open.RemoveAt(j);
87            break;
88          }
89        }
90      }
91      child[N - 1] = open[0];
92      return child;
93    }
94
95    public static UnivariateRelativeModel CreateDirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {
96      var model = new double[N, N];
97      for (var i = 0; i < pop.Count; i++) {
98        for (var j = 0; j < N - 1; j++) {
99          for (var k = j + 1; k < N; k++) {
100            model[pop[i][j], pop[i][k]]++;
101          }
102          model[pop[i][N - 1], pop[i][0]]++;
103        }
104      }
105      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected);
106    }
107
108    public static UnivariateRelativeModel CreateDirectedWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
109      var popSize = 0;
110      var model = new double[N, N];
111
112      var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q });
113      foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) {
114        // from worst to best, worst solution has 1 vote, best solution N votes
115        popSize++;
116        for (var j = 0; j < N - 1; j++) {
117          for (var k = j + 1; k < N; k++) {
118            model[ind.Solution[j], ind.Solution[k]] += popSize;
119          }
120          model[ind.Solution[N - 1], ind.Solution[0]] += popSize;
121        }
122      }
123      if (popSize == 0) throw new ArgumentException("Cannot train model from empty population.");
124      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected);
125    }
126
127    public static UnivariateRelativeModel CreateDirectedWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
128      var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization);
129      var factor = 1.0 / proportions.Sum();
130      var model = new double[N, N];
131
132      foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) {
133        for (var x = 0; x < model.Length; x++) {
134          for (var j = 0; j < N - 1; j++) {
135            for (var k = j + 1; k < N; k++) {
136              model[ind.Solution[j], ind.Solution[k]] += ind.Proportion * factor;
137            }
138            model[ind.Solution[N - 1], ind.Solution[0]] += ind.Proportion * factor;
139          }
140        }
141      }
142      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected);
143    }
144
145    public static UnivariateRelativeModel CreateUndirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {
146      var model = new double[N, N];
147      for (var i = 0; i < pop.Count; i++) {
148        for (var j = 0; j < N - 1; j++) {
149          for (var k = j + 1; k < N; k++) {
150            model[pop[i][j], pop[i][k]]++;
151            model[pop[i][k], pop[i][j]]++;
152          }
153          model[pop[i][0], pop[i][N - 1]]++;
154          model[pop[i][N - 1], pop[i][0]]++;
155        }
156      }
157      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected);
158    }
159
160    public static UnivariateRelativeModel CreateUndirectedWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
161      var popSize = 0;
162      var model = new double[N, N];
163
164      var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q });
165      foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) {
166        // from worst to best, worst solution has 1 vote, best solution N votes
167        popSize++;
168        for (var j = 0; j < N - 1; j++) {
169          for (var k = j + 1; k < N; k++) {
170            model[ind.Solution[j], ind.Solution[k]] += popSize;
171            model[ind.Solution[k], ind.Solution[j]] += popSize;
172          }
173          model[ind.Solution[0], ind.Solution[N - 1]] += popSize;
174          model[ind.Solution[N - 1], ind.Solution[0]] += popSize;
175        }
176      }
177      if (popSize == 0) throw new ArgumentException("Cannot train model from empty population.");
178      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected);
179    }
180
181    public static UnivariateRelativeModel CreateUndirectedWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
182      var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization);
183      var factor = 1.0 / proportions.Sum();
184      var model = new double[N, N];
185
186      foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) {
187        for (var x = 0; x < model.Length; x++) {
188          for (var j = 0; j < N - 1; j++) {
189            for (var k = j + 1; k < N; k++) {
190              model[ind.Solution[j], ind.Solution[k]] += ind.Proportion * factor;
191              model[ind.Solution[k], ind.Solution[j]] += ind.Proportion * factor;
192            }
193            model[ind.Solution[0], ind.Solution[N - 1]] += ind.Proportion * factor;
194            model[ind.Solution[N - 1], ind.Solution[0]] += ind.Proportion * factor;
195          }
196        }
197      }
198      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected);
199    }
200  }
201}
Note: See TracBrowser for help on using the repository browser.