Changeset 14424 for branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings
- Timestamp:
- 11/28/16 16:41:36 (8 years ago)
- Location:
- branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators
- Files:
-
- 2 added
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators/ClusterCreator.cs
r14417 r14424 37 37 [Item("ClusterCreator", "Creates a VRP solution by clustering customers first with a KMeans-algorithm and building tours afterwards alternatevly in a random or a greedy fashion.")] 38 38 [StorableClass] 39 public sealedclass ClusterCreator : PotvinCreator, IStochasticOperator {39 public abstract class ClusterCreator : PotvinCreator, IStochasticOperator { 40 40 41 41 public ILookupParameter<IRandom> RandomParameter { … … 69 69 } 70 70 71 pr ivateClusterCreator(ClusterCreator original, Cloner cloner)71 protected ClusterCreator(ClusterCreator original, Cloner cloner) 72 72 : base(original, cloner) { 73 73 } 74 74 75 public override IDeepCloneable Clone(Cloner cloner) { 76 return new ClusterCreator(this, cloner); 77 } 78 79 public static PotvinEncoding CreateSolution(IVRPProblemInstance instance, IRandom random, int minK, int maxK, double clusterChangeThreshold, int creationOption) { 80 PotvinEncoding result = new PotvinEncoding(instance); 81 82 IPickupAndDeliveryProblemInstance pdp = instance as IPickupAndDeliveryProblemInstance; 83 84 // add all customers 85 List<int> customers = new List<int>(); 86 for (int i = 1; i <= instance.Cities.Value; i++) { 87 if(pdp == null || pdp.GetDemand(i) >= 0) 88 customers.Add(i); 89 } 90 91 // cluster by spatial distribution 92 93 // (1) wrap stops in ClusterObject 94 List<ClusterObject> clusterObjects = new List<ClusterObject>(); 95 foreach (int customer in customers) { 96 clusterObjects.Add(new ClusterObject(customer, instance.GetCoordinates(customer))); 97 } 98 99 // (2) cluster 100 int k = random.Next(minK, maxK); 101 List<Cluster> clusters = KMeans(instance, random, clusterObjects, k, clusterChangeThreshold); 102 103 // (3) build tours 104 // (a) shuffle 105 // (b) greedy 106 foreach (Cluster c in clusters) { 107 Tour newTour = new Tour(); 108 result.Tours.Add(newTour); 109 110 if (creationOption == 0) { 111 // (a) shuffle 112 c.Objects.Shuffle(random); 113 foreach (ClusterObject o in c.Objects) { 114 newTour.Stops.Add(o.Id); 115 } 116 } else { 117 // (b) greedy 118 foreach (ClusterObject o in c.Objects) { 119 newTour.Stops.Add(o.Id); 120 } 121 GreedyTourCreation(instance, result, newTour, false); 122 } 123 } 124 return result; 125 } 126 127 public override IOperation InstrumentedApply() { 128 IRandom random = RandomParameter.ActualValue; 129 130 int minK = (MinK.Value.Value > 0) ? MinK.Value.Value : 1; 131 int maxK = (MaxK.Value != null) ? MaxK.Value.Value : ProblemInstance.Vehicles.Value; 132 double clusterChangeThreshold = (ClusterChangeThreshold.Value.Value >= 0.0 && 133 ClusterChangeThreshold.Value.Value <= 1.0) 134 ? ClusterChangeThreshold.Value.Value 135 : 0.0; 136 137 // normalize probabilities 138 double max = TourCreationProbabilities.Value.Max(); 139 double[] probabilites = new double[2]; 140 for (int i = 0; i < TourCreationProbabilities.Value.Length; i++) { 141 probabilites[i] = TourCreationProbabilities.Value[i] / max; 142 } 143 144 List<int> creationOptions = new List<int>() {0, 1}; 145 int creationOption = creationOptions.SampleProportional(random, 1, probabilites, false, false).First(); 146 147 VRPToursParameter.ActualValue = CreateSolution(ProblemInstance, random, minK, maxK, clusterChangeThreshold, creationOption); 148 return base.InstrumentedApply(); 149 } 150 151 private static List<Cluster> KMeans(IVRPProblemInstance instance, IRandom random, List<ClusterObject> objects, int k, double changeTreshold) { 152 153 List<Cluster> clusters = new List<Cluster>(); 154 HashSet<int> initMeans = new HashSet<int>(); 155 int nextMean = -1; 156 157 // (1) initialize each cluster with a random first object (i.e. mean) 158 for (int i = 0; i < k && i < objects.Count; i++) { 159 Cluster cluster = new Cluster(instance, i); 160 161 do { 162 nextMean = random.Next(0, objects.Count); 163 } while (initMeans.Contains(nextMean)); 164 initMeans.Add(nextMean); 165 cluster.SetMean(objects[nextMean]); 166 clusters.Add(cluster); 167 } 168 169 // (2) repeat clustering until change rate is below threshold 170 int changes = 0; 171 double changeRate = 1.0; 172 173 do { 174 changes = KMeansRun(clusters, objects); 175 changeRate = changes / objects.Count; 176 177 } while (changeRate > changeTreshold); 178 179 // remove empty clusters 180 clusters.RemoveAll(c => c.Objects.Count.Equals(0)); 181 182 return clusters; 183 } 184 185 private static int KMeansRun(List<Cluster> clusters, List<ClusterObject> objects) { 186 int changes = 0; 187 188 foreach (Cluster c in clusters) { 189 c.Objects.Clear(); 190 } 191 192 foreach (ClusterObject o in objects) { 193 int bestClusterIdx = -1; 194 double minImpact = double.MaxValue; 195 for(int i = 0; i < clusters.Count; i++) { 196 double impact = clusters[i].CalculateVarianceIncrease(o); 197 if (impact < minImpact) { 198 minImpact = impact; 199 bestClusterIdx = i; 200 } 201 } 202 clusters[bestClusterIdx].AddObject(o); 203 } 204 205 foreach (Cluster c in clusters) { 206 c.CalculateMean(); 207 } 208 209 return changes; 210 } 211 212 class Cluster { 213 public int Id; 214 public List<ClusterObject> Objects { get; private set; } 215 public double Variance { get; private set; } 216 public ClusterObject Mean { get; set; } 217 218 private readonly IVRPProblemInstance instance; 219 220 public Cluster(IVRPProblemInstance instance, int id) { 221 this.instance = instance; 222 Id = id; 223 Objects = new List<ClusterObject>(); 224 } 225 226 public bool IsEqual(Cluster cluster) { 227 bool equal = (cluster != null) && (cluster.Objects.Count == Objects.Count); 228 int index = 0; 229 230 while (equal && index < Objects.Count) { 231 equal = cluster.Objects.Contains(Objects[index]); 232 index++; 233 } 234 return equal; 235 } 236 237 public bool AddObject(ClusterObject o) { 238 Objects.Add(o); 239 240 bool clusterChanged = o.ClusterId != Id; 241 o.ClusterId = Id; 242 return clusterChanged; 243 } 244 245 public void SetMean(ClusterObject o) { 246 Mean = o; 247 Mean.ClusterId = Id; 248 } 249 250 public ClusterObject CalculateMean() { 251 int dimensions = instance.Coordinates.Columns; 252 ClusterObject mean = new ClusterObject(-1, Id, dimensions); 253 foreach (ClusterObject o in Objects) { 254 double[] coordinates = instance.GetCoordinates(o.Id); 255 for (int i = 0; i < coordinates.Length; i++) { 256 mean.Coordinates[i] += (coordinates[i] / Objects.Count); 257 } 258 } 259 Mean = mean; 260 return Mean; 261 } 262 263 public double CalculateVariance() { 264 Variance = 0.0; 265 266 if (Mean == null) 267 CalculateMean(); 268 269 foreach (ClusterObject o in Objects) { 270 double[] coordinates = instance.GetCoordinates(o.Id); 271 Variance += Math.Pow(Mean.GetDistance(o.Coordinates), 2); 272 } 273 return Variance /= Objects.Count; 274 } 275 276 public double CalculateVarianceIncrease(ClusterObject o) { 277 if(Mean == null) 278 CalculateMean(); 279 280 return Math.Pow(Mean.GetDistance(o.Coordinates), 2) / ((Objects.Count > 0) ? Objects.Count : 1); 281 } 282 } 283 284 class ClusterObject { 285 286 public int Id { get; private set; } 287 288 public int ClusterId { get; set; } 289 290 public double[] Coordinates { get; set; } 291 292 public ClusterObject() { } 293 294 public ClusterObject(int id, int clusterId = -1) { 295 Id = id; 296 ClusterId = clusterId; 297 } 298 299 public ClusterObject(int id, double[] coordinates) { 300 Id = id; 301 Coordinates = coordinates; 302 } 303 304 public ClusterObject(int id, int clusterId, int dimensions) { 305 Id = id; 306 ClusterId = clusterId; 307 Coordinates = new double[dimensions]; 308 } 309 310 public double GetDistance(double[] otherCoordinates) { 311 double distance = 0.0; 312 313 for (int i = 0; i < otherCoordinates.Length; i++) { 314 distance += Math.Pow(Coordinates[i] - otherCoordinates[i], 2); 315 } 316 return Math.Sqrt(distance); 317 } 318 } 319 320 private static double CalculateAngleToDepot(IVRPProblemInstance instance, int city) { 75 protected static double CalculateAngleToDepot(IVRPProblemInstance instance, int city) { 321 76 double dx = instance.GetCoordinates(0)[0]; 322 77 double dy = instance.GetCoordinates(0)[1]; … … 336 91 } 337 92 338 pr ivatestatic void GreedyTourCreation(IVRPProblemInstance instance, PotvinEncoding individual, Tour tour, bool includeCosts) {93 protected static void GreedyTourCreation(IVRPProblemInstance instance, PotvinEncoding individual, Tour tour, bool includeCosts) { 339 94 Tour unrouted = tour.Clone() as Tour; 340 95 tour.Stops.Clear();
Note: See TracChangeset
for help on using the changeset viewer.