- Timestamp:
- 07/08/16 14:37:15 (8 years ago)
- Location:
- stable
- Files:
-
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
stable
- Property svn:mergeinfo changed
/trunk/sources merged: 13826,13921-13922,13941,13992-13993,14000
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression merged: 13921,13941
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4 merged: 13921,13941
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer.cs
r13310 r14027 89 89 90 90 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 91 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);91 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 92 92 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 93 93 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer.cs
r12009 r14027 54 54 55 55 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 56 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);56 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 57 57 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 58 58 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer.cs
r12009 r14027 63 63 64 64 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 65 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);65 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 66 66 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 67 67 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer.cs
r12009 r14027 42 42 43 43 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) { 44 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);44 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 45 45 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 46 46 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer.cs
r12009 r14027 55 55 56 56 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { 57 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);57 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 58 58 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 59 59 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer.cs
r12009 r14027 42 42 43 43 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) { 44 var model = new SymbolicRegressionModel( (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);44 var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); 45 45 if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); 46 46 return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone()); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionModel.cs
r12702 r14027 20 20 #endregion 21 21 22 using System; 22 23 using System.Collections.Generic; 23 24 using HeuristicLab.Common; … … 33 34 [Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")] 34 35 public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel { 35 36 [Storable] 37 private readonly string targetVariable; 38 public string TargetVariable { 39 get { return targetVariable; } 40 } 36 41 37 42 [StorableConstructor] 38 43 protected SymbolicRegressionModel(bool deserializing) : base(deserializing) { } 39 protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner) : base(original, cloner) { }40 44 41 public SymbolicRegressionModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, 45 protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner) 46 : base(original, cloner) { 47 this.targetVariable = original.targetVariable; 48 } 49 50 public SymbolicRegressionModel(string targetVariable, ISymbolicExpressionTree tree, 51 ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, 42 52 double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) 43 : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) { } 53 : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) { 54 this.targetVariable = targetVariable; 55 } 44 56 45 57 public override IDeepCloneable Clone(Cloner cloner) { -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionPruningOperator.cs
r12745 r14027 69 69 70 70 protected override ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits) { 71 return new SymbolicRegressionModel(tree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 71 var regressionProblemData = (IRegressionProblemData)problemData; 72 return new SymbolicRegressionModel(regressionProblemData.TargetVariable, tree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 72 73 } 73 74 … … 83 84 public static ISymbolicExpressionTree Prune(ISymbolicExpressionTree tree, SymbolicRegressionSolutionImpactValuesCalculator impactValuesCalculator, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, DoubleLimit estimationLimits, IEnumerable<int> rows, double nodeImpactThreshold = 0.0, bool pruneOnlyZeroImpactNodes = false) { 84 85 var clonedTree = (ISymbolicExpressionTree)tree.Clone(); 85 var model = new SymbolicRegressionModel( clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper);86 var model = new SymbolicRegressionModel(problemData.TargetVariable, clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 86 87 var nodes = clonedTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); // skip the nodes corresponding to the ProgramRootSymbol and the StartSymbol 87 88
Note: See TracChangeset
for help on using the changeset viewer.