Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/27/16 12:25:39 (9 years ago)
Author:
bburlacu
Message:

#2602: Implement method to generate k-combinations.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Common/3.3/EnumerableExtensions.cs

    r12012 r13802  
    11#region License Information
    22/* HeuristicLab
    3  * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    44 *
    55 * This file is part of HeuristicLab.
     
    9898      return sequences.Where(s => s.Any()).Aggregate(result, (current, s) => (from seq in current from item in s select seq.Concat(new[] { item })));
    9999    }
     100
     101    /// <summary>
     102    /// Compute all k-combinations of elements from the provided collection.
     103    /// <param name="elements">The collection of elements</param>
     104    /// <param name="k">The combination group size</param>
     105    /// <returns>An enumerable sequence of all the possible k-combinations of elements</returns>
     106    /// </summary>
     107    public static IEnumerable<IEnumerable<T>> Combinations<T>(this IList<T> elements, int k) {
     108      if (k > elements.Count)
     109        throw new ArgumentException();
     110      if (k == 1) {
     111        foreach(var element in elements) yield return new[] { element };
     112      } else {
     113        int n = elements.Count;
     114        var range = new int[k];
     115        for (int i = 1; i < k; ++i)
     116          range[i] = i;
     117
     118        var length = BinomialCoefficient(n, k);
     119
     120        for (int i = 0; i < length; ++i) {
     121          yield return range.Select(x => elements[x]);
     122          if (i == length-1) break;
     123          var m = k - 1;
     124          var max = n - 1;
     125          while (range[m] == max) { --m; --max; }
     126          range[m]++;
     127          for (int j = m + 1; j < k; ++j) {
     128            range[j] = range[j-1] + 1;
     129          }
     130        }
     131      }
     132    }
     133
     134    /// <summary>
     135    /// This function gets the total number of unique combinations based upon N and K,
     136    /// where N is the total number of items and K is the size of the group.
     137    /// It calculates the total number of unique combinations C(N, K) = N! / ( K! (N - K)! )
     138    /// using the  recursion C(N+1, K+1) = (N+1 / K+1) * C(N, K).
     139    /// <remarks>http://blog.plover.com/math/choose.html</remarks>
     140    /// <param name="n">The number of elements</param>
     141    /// <param name="k">The size of the group</param>
     142    /// <returns>The binomial coefficient C(N, K)</returns>
     143    /// </summary>
     144    public static long BinomialCoefficient(long n, long k)  {
     145      if (k > n) return 0;
     146      if (k == n) return 1;
     147      if (k > n - k)
     148        k = n - k;
     149      long r = 1;
     150      for (long d = 1; d <= k; d++)   {
     151        r *= n--;
     152        r /= d;
     153      }
     154      return r;
     155    }
    100156  }
    101157}
Note: See TracChangeset for help on using the changeset viewer.