Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
11/25/15 23:24:01 (9 years ago)
Author:
abeham
Message:

#2521:

  • Adapted single-objective test function problem to new problem infrastructure
  • Added additional interfaces to RealVectorEncoding
  • Fixed IParticleUpdater interface (must implement IStochasticOperator if it contains a Random parameter)
Location:
branches/ProblemRefactoring/HeuristicLab.Problems.TestFunctions/3.3/Functions
Files:
1 copied
1 moved

Legend:

Unmodified
Added
Removed
  • branches/ProblemRefactoring/HeuristicLab.Problems.TestFunctions/3.3/Functions/Schwefel.cs

    r13393 r13403  
    3131  /// The Schwefel function (sine root) is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms.  Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.
    3232  /// </summary>
    33   [Item("SchwefelEvaluator", "Evaluates the Schwefel function (sine root) on a given point. In the given bounds [-500;500] the optimum of this function is close to 0 at (420.968746453712,420.968746453712,...,420.968746453712). It is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms.  Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.")]
     33  [Item("Schwefel", "Evaluates the Schwefel function (sine root) on a given point. In the given bounds [-500;500] the optimum of this function is close to 0 at (420.968746453712,420.968746453712,...,420.968746453712). It is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms.  Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.")]
    3434  [StorableClass]
    35   public class SchwefelEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
    36     public override string FunctionName { get { return "Schwefel"; } }
     35  public class Schwefel : SingleObjectiveTestFunction {
    3736    /// <summary>
    3837    /// Returns false as the Schwefel (sine root) function is a minimization problem.
     
    6766
    6867    [StorableConstructor]
    69     protected SchwefelEvaluator(bool deserializing) : base(deserializing) { }
    70     protected SchwefelEvaluator(SchwefelEvaluator original, Cloner cloner) : base(original, cloner) { }
    71     public SchwefelEvaluator() : base() { }
     68    protected Schwefel(bool deserializing) : base(deserializing) { }
     69    protected Schwefel(Schwefel original, Cloner cloner) : base(original, cloner) { }
     70    public Schwefel() : base() { }
    7271
    7372    public override IDeepCloneable Clone(Cloner cloner) {
    74       return new SchwefelEvaluator(this, cloner);
     73      return new Schwefel(this, cloner);
    7574    }
    7675
Note: See TracChangeset for help on using the changeset viewer.