- Timestamp:
- 07/09/15 16:39:37 (9 years ago)
- Location:
- branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesAlgorithmStatic.cs
r12696 r12697 81 81 activeIdx = Enumerable.Range(0, nRows).ToArray(); 82 82 83 var zeros = Enumerable.Repeat(0.0, nRows) ;84 double f0 = lossFunction. GetLineSearchFunc(y, zeros)(activeIdx, 0, nRows - 1); // initial constant value (mean for squared errors)83 var zeros = Enumerable.Repeat(0.0, nRows).ToArray(); 84 double f0 = lossFunction.LineSearch(y, zeros, activeIdx, 0, nRows - 1); // initial constant value (mean for squared errors) 85 85 pred = Enumerable.Repeat(f0, nRows).ToArray(); 86 86 predTest = Enumerable.Repeat(f0, problemData.TestIndices.Count()).ToArray(); … … 166 166 } 167 167 168 var tree = treeBuilder.CreateRegressionTreeForGradientBoosting(pseudoRes, maxSize, activeIdx, lossFunction.GetLineSearchFunc(y, yPred), r, m);168 var tree = treeBuilder.CreateRegressionTreeForGradientBoosting(pseudoRes, yPred, maxSize, activeIdx, lossFunction, r, m); 169 169 170 170 int i = 0; -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/AbsoluteErrorLoss.cs
r12696 r12697 61 61 62 62 // return median of residuals 63 public LineSearchFunc GetLineSearchFunc(IEnumerable<double> target, IEnumerable<double> pred) { 64 var targetArr = target.ToArray(); 65 var predArr = pred.ToArray(); 66 63 // targetArr and predArr are not changed by LineSearch 64 public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) { 67 65 if (targetArr.Length != predArr.Length) 68 66 throw new ArgumentException("target and pred have differing lengths"); 69 67 70 // line search for abs error 71 LineSearchFunc lineSearch = (idx, startIdx, endIdx) => { 72 // Median() is allocating an array anyway 73 // It would be possible to pre-allocated an array for the residuals if Median() would allow specification of a sub-range 74 int nRows = endIdx - startIdx + 1; 75 var res = new double[nRows]; 76 for (int i = startIdx; i <= endIdx; i++) { 77 var row = idx[i]; 78 res[i - startIdx] = targetArr[row] - predArr[row]; 79 } 80 return res.Median(); // TODO: improve efficiency 81 }; 82 return lineSearch; 83 68 // Median() is allocating an array anyway 69 // It would be possible to pre-allocated an array for the residuals if Median() would allow specification of a sub-range 70 int nRows = endIdx - startIdx + 1; 71 var res = new double[nRows]; 72 for (int i = startIdx; i <= endIdx; i++) { 73 var row = idx[i]; 74 res[i - startIdx] = targetArr[row] - predArr[row]; 75 } 76 return res.Median(); // TODO: improve efficiency 84 77 } 85 78 -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/ILossFunction.cs
r12696 r12697 24 24 25 25 namespace HeuristicLab.Algorithms.DataAnalysis { 26 // returns the optimal value for the partition of rows stored in idx[startIdx] .. idx[endIdx] inclusive27 public delegate double LineSearchFunc(int[] idx, int startIdx, int endIdx);28 29 26 // represents an interface for loss functions used by gradient boosting 30 27 // target represents the target vector (original targets from the problem data, never changed) … … 37 34 IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred); 38 35 39 // returns a function that returns the optimal prediction value for a subset of rows from target and pred (see LineSearchFunc delegate above)40 LineSearchFunc GetLineSearchFunc(IEnumerable<double> target, IEnumerable<double> pred);36 // returns the optimal value for the partition of rows stored in idx[startIdx] .. idx[endIdx] inclusive 37 double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx); 41 38 } 42 39 } -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/LogisticRegressionLoss.cs
r12696 r12697 62 62 } 63 63 64 public LineSearchFunc GetLineSearchFunc(IEnumerable<double> target, IEnumerable<double> pred) { 65 var targetArr = target.ToArray(); 66 var predArr = pred.ToArray(); 67 64 // targetArr and predArr are not changed by LineSearch 65 public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) { 68 66 if (targetArr.Length != predArr.Length) 69 67 throw new ArgumentException("target and pred have different lengths"); 70 68 71 69 // "Simple Newton-Raphson step" of eqn. 23 72 LineSearchFunc lineSearch = (idx, startIdx, endIdx) => { 73 double sumY = 0.0; 74 double sumDiff = 0.0; 75 for (int i = startIdx; i <= endIdx; i++) { 76 var row = idx[i]; 77 var y = targetArr[row] * 2 - 1; // y in {-1,1} 78 var pseudoResponse = 2 * y / (1 + Math.Exp(2 * y * predArr[row])); 70 double sumY = 0.0; 71 double sumDiff = 0.0; 72 for (int i = startIdx; i <= endIdx; i++) { 73 var row = idx[i]; 74 var y = targetArr[row] * 2 - 1; // y in {-1,1} 75 var pseudoResponse = 2 * y / (1 + Math.Exp(2 * y * predArr[row])); 79 76 80 sumY += pseudoResponse; 81 sumDiff += Math.Abs(pseudoResponse) * (2 - Math.Abs(pseudoResponse)); 82 } 83 // prevent divByZero 84 sumDiff = Math.Max(1E-12, sumDiff); 85 return sumY / sumDiff; 86 }; 87 return lineSearch; 88 77 sumY += pseudoResponse; 78 sumDiff += Math.Abs(pseudoResponse) * (2 - Math.Abs(pseudoResponse)); 79 } 80 // prevent divByZero 81 sumDiff = Math.Max(1E-12, sumDiff); 82 return sumY / sumDiff; 89 83 } 90 84 -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/RelativeErrorLoss.cs
r12696 r12697 60 60 } 61 61 62 public LineSearchFunc GetLineSearchFunc(IEnumerable<double> target, IEnumerable<double> pred) { 63 var targetArr = target.ToArray(); 64 var predArr = pred.ToArray(); 65 62 // targetArr and predArr are not changed by LineSearch 63 public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) { 66 64 if (targetArr.Length != predArr.Length) 67 65 throw new ArgumentException("target and pred have different lengths"); … … 69 67 // line search for relative error 70 68 // weighted median (weight = 1/target) 71 LineSearchFunc lineSearch = (idx, startIdx, endIdx) => { 72 // weighted median calculation 73 int nRows = endIdx - startIdx + 1; // startIdx and endIdx are inclusive 74 if (nRows == 1) return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; // res 75 else if (nRows == 2) { 76 // weighted average of two residuals 77 var w0 = Math.Abs(1.0 / targetArr[idx[startIdx]]); 78 var w1 = Math.Abs(1.0 / targetArr[idx[endIdx]]); 79 if (w0 > w1) { 80 return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; 81 } else if (w0 < w1) { 82 return targetArr[idx[endIdx]] - predArr[idx[endIdx]]; 83 } else { 84 // same weight -> return average of both residuals 85 return ((targetArr[idx[startIdx]] - predArr[idx[startIdx]]) + (targetArr[idx[endIdx]] - predArr[idx[endIdx]])) / 2; 86 } 69 int nRows = endIdx - startIdx + 1; // startIdx and endIdx are inclusive 70 if (nRows == 1) return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; // res 71 else if (nRows == 2) { 72 // weighted average of two residuals 73 var w0 = Math.Abs(1.0 / targetArr[idx[startIdx]]); 74 var w1 = Math.Abs(1.0 / targetArr[idx[endIdx]]); 75 if (w0 > w1) { 76 return targetArr[idx[startIdx]] - predArr[idx[startIdx]]; 77 } else if (w0 < w1) { 78 return targetArr[idx[endIdx]] - predArr[idx[endIdx]]; 87 79 } else { 88 // create an array of key-value pairs to be sorted (instead of using Array.Sort(res, weights)) 89 var res_w = new KeyValuePair<double, double>[nRows]; 90 var totalWeight = 0.0; 91 for (int i = startIdx; i <= endIdx; i++) { 92 int row = idx[i]; 93 var res = targetArr[row] - predArr[row]; 94 var w = Math.Abs(1.0 / targetArr[row]); 95 res_w[i - startIdx] = new KeyValuePair<double, double>(res, w); 96 totalWeight += w; 97 } 98 // TODO: improve efficiency (find median without sort) 99 res_w.StableSort((a, b) => Math.Sign(a.Key - b.Key)); 80 // same weight -> return average of both residuals 81 return ((targetArr[idx[startIdx]] - predArr[idx[startIdx]]) + (targetArr[idx[endIdx]] - predArr[idx[endIdx]])) / 2; 82 } 83 } else { 84 // create an array of key-value pairs to be sorted (instead of using Array.Sort(res, weights)) 85 var res_w = new KeyValuePair<double, double>[nRows]; 86 var totalWeight = 0.0; 87 for (int i = startIdx; i <= endIdx; i++) { 88 int row = idx[i]; 89 var res = targetArr[row] - predArr[row]; 90 var w = Math.Abs(1.0 / targetArr[row]); 91 res_w[i - startIdx] = new KeyValuePair<double, double>(res, w); 92 totalWeight += w; 93 } 94 // TODO: improve efficiency (find median without sort) 95 res_w.StableSort((a, b) => Math.Sign(a.Key - b.Key)); 100 96 101 int k = 0; 102 double sum = totalWeight - res_w[k].Value; // total - first weight 103 while (sum > totalWeight / 2) { 104 k++; 105 sum -= res_w[k].Value; 106 } 107 return res_w[k].Key; 97 int k = 0; 98 double sum = totalWeight - res_w[k].Value; // total - first weight 99 while (sum > totalWeight / 2) { 100 k++; 101 sum -= res_w[k].Value; 108 102 } 109 };110 return lineSearch;103 return res_w[k].Key; 104 } 111 105 } 112 106 -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/SquaredErrorLoss.cs
r12696 r12697 53 53 } 54 54 55 public LineSearchFunc GetLineSearchFunc(IEnumerable<double> target, IEnumerable<double> pred) { 56 var targetArr = target.ToArray(); 57 var predArr = pred.ToArray(); 55 // targetArr and predArr are not changed by LineSearch 56 public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) { 58 57 if (targetArr.Length != predArr.Length) 59 58 throw new ArgumentException("target and pred have different lengths"); … … 61 60 // line search for squared error loss 62 61 // for a given partition of rows the optimal constant that should be added to the current prediction values is the average of the residuals 63 LineSearchFunc lineSearch = (idx, startIdx, endIdx) => { 64 double s = 0.0; 65 int n = 0; 66 for (int i = startIdx; i <= endIdx; i++) { 67 int row = idx[i]; 68 s += (targetArr[row] - predArr[row]); 69 n++; 70 } 71 return s / n; 72 }; 73 return lineSearch; 74 62 double s = 0.0; 63 int n = 0; 64 for (int i = startIdx; i <= endIdx; i++) { 65 int row = idx[i]; 66 s += (targetArr[row] - predArr[row]); 67 n++; 68 } 69 return s / n; 75 70 } 76 71 -
branches/GBT-trunkintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/RegressionTreeBuilder.cs
r12696 r12697 42 42 private readonly int nCols; 43 43 private readonly double[][] x; // all training data (original order from problemData), x is constant 44 private double[] originalY; // the original target labels (from problemData), originalY is constant 45 private double[] curPred; // current predictions for originalY (in case we are using gradient boosting, otherwise = zeros), only necessary for line search 46 44 47 private double[] y; // training labels (original order from problemData), y can be changed 45 48 … … 102 105 103 106 x = new double[nCols][]; 104 y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray(); 105 107 originalY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray(); 108 y = new double[originalY.Length]; 109 Array.Copy(originalY, y, y.Length); // copy values (originalY is fixed, y is changed in gradient boosting) 110 curPred = Enumerable.Repeat(0.0, y.Length).ToArray(); // zeros 106 111 107 112 int col = 0; … … 127 132 128 133 var seLoss = new SquaredErrorLoss(); 129 var zeros = Enumerable.Repeat(0.0, y.Length); 130 131 var model = CreateRegressionTreeForGradientBoosting(y, maxSize, problemData.TrainingIndices.ToArray(), seLoss.GetLineSearchFunc(y, zeros), r, m); 134 135 var model = CreateRegressionTreeForGradientBoosting(y, curPred, maxSize, problemData.TrainingIndices.ToArray(), seLoss, r, m); 132 136 133 137 return new GradientBoostedTreesModel(new[] { new ConstantRegressionModel(yAvg), model }, new[] { 1.0, 1.0 }); … … 135 139 136 140 // specific interface that allows to specify the target labels and the training rows which is necessary when for gradient boosted trees 137 public IRegressionModel CreateRegressionTreeForGradientBoosting(double[] y, int maxSize, int[] idx, LineSearchFunc lineSearch, double r = 0.5, double m = 0.5) {141 public IRegressionModel CreateRegressionTreeForGradientBoosting(double[] y, double[] curPred, int maxSize, int[] idx, ILossFunction lossFunction, double r = 0.5, double m = 0.5) { 138 142 Debug.Assert(maxSize > 0); 139 143 Debug.Assert(r > 0); … … 143 147 Debug.Assert(m <= 1.0); 144 148 145 this.y = y; // y is changed in gradient boosting 149 // y and curPred are changed in gradient boosting 150 this.y = y; 151 this.curPred = curPred; 146 152 147 153 // shuffle row idx … … 157 163 effectiveVars = (int)Math.Ceiling(nCols * m); 158 164 159 // the which array is used for parti ning row idxs165 // the which array is used for partitioing row idxs 160 166 Array.Clear(which, 0, which.Length); 161 167 … … 184 190 // and calculate the best split for this root node and enqueue it into a queue sorted by improvement throught the split 185 191 // start and end idx are inclusive 186 CreateLeafNode(0, effectiveRows - 1, l ineSearch);192 CreateLeafNode(0, effectiveRows - 1, lossFunction); 187 193 188 194 // process the priority queue to complete the tree 189 CreateRegressionTreeFromQueue(maxSize, l ineSearch);195 CreateRegressionTreeFromQueue(maxSize, lossFunction); 190 196 191 197 return new RegressionTreeModel(tree.ToArray()); … … 194 200 195 201 // processes potential splits from the queue as long as splits are left and the maximum size of the tree is not reached 196 private void CreateRegressionTreeFromQueue(int maxNodes, LineSearchFunc lineSearch) {202 private void CreateRegressionTreeFromQueue(int maxNodes, ILossFunction lossFunction) { 197 203 while (queue.Any() && curTreeNodeIdx + 1 < maxNodes) { // two nodes are created in each loop 198 204 var f = queue[queue.Count - 1]; // last element has the largest improvement … … 213 219 214 220 // create two leaf nodes (and enqueue best splits for both) 215 var leftTreeIdx = CreateLeafNode(startIdx, splitIdx, l ineSearch);216 var rightTreeIdx = CreateLeafNode(splitIdx + 1, endIdx, l ineSearch);221 var leftTreeIdx = CreateLeafNode(startIdx, splitIdx, lossFunction); 222 var rightTreeIdx = CreateLeafNode(splitIdx + 1, endIdx, lossFunction); 217 223 218 224 // overwrite existing leaf node with an internal node … … 223 229 224 230 // returns the index of the newly created tree node 225 private int CreateLeafNode(int startIdx, int endIdx, LineSearchFunc lineSearch) {231 private int CreateLeafNode(int startIdx, int endIdx, ILossFunction lossFunction) { 226 232 // write a leaf node 227 var val = l ineSearch(internalIdx, startIdx, endIdx);233 var val = lossFunction.LineSearch(originalY, curPred, internalIdx, startIdx, endIdx); 228 234 tree[curTreeNodeIdx] = new RegressionTreeModel.TreeNode(RegressionTreeModel.TreeNode.NO_VARIABLE, val); 229 235
Note: See TracChangeset
for help on using the changeset viewer.