- Timestamp:
- 04/07/15 14:31:06 (10 years ago)
- Location:
- branches/HeuristicLab.Problems.GrammaticalOptimization-gkr
- Files:
-
- 2 edited
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GrammaticalOptimization-gkr/Test/RunDemo.cs
r12014 r12290 26 26 () => new RandomPolicy(), 27 27 () => new ActiveLearningPolicy(), 28 () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),29 () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),30 () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),31 () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),28 // () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"), 29 // () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"), 30 // () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"), 31 // () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"), 32 32 //() => new GaussianThompsonSamplingPolicy(), 33 33 () => new GaussianThompsonSamplingPolicy(true), -
branches/HeuristicLab.Problems.GrammaticalOptimization-gkr/Test/TestTunedSettings.cs
r12099 r12290 42 42 () => new RandomPolicy(), 43 43 () => new ActiveLearningPolicy(), 44 () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),45 () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),46 () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),47 () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),44 // () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"), 45 // () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"), 46 // () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"), 47 // () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"), 48 48 //() => new GaussianThompsonSamplingPolicy(), 49 49 () => new GaussianThompsonSamplingPolicy(true), … … 152 152 () => new RandomPolicy(), 153 153 () => new ActiveLearningPolicy(), 154 () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),155 () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),156 () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),157 () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),154 // () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"), 155 // () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"), 156 // () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"), 157 // () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"), 158 158 //() => new GaussianThompsonSamplingPolicy(), 159 159 () => new GaussianThompsonSamplingPolicy(true), … … 255 255 var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[] 256 256 { 257 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Nguyen F7", true),258 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Keijzer 6", true),259 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Vladislavleva-4", true),260 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Spatial", true),261 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Friedman - II", true),262 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Tower", true),257 //(randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Nguyen F7", true), very easy?! 258 //(randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Keijzer 6", true), very easy?! 259 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Vladislavleva-4", 1.0, true), // kommenda - const opt 260 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Spatial", 1.0, true), 261 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Friedman - II", 1.0, true), 262 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Tower", 1.0, true), 263 263 }; 264 264 … … 348 348 var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[] 349 349 { 350 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Poly-10", true ),350 (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Poly-10", 1.0, true ), 351 351 }; 352 352
Note: See TracChangeset
for help on using the changeset viewer.