1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 | using HeuristicLab.Algorithms.Bandits;
|
---|
7 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
8 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
9 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
10 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
11 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
12 | using RandomPolicy = HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy;
|
---|
13 |
|
---|
14 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
15 | [TestClass]
|
---|
16 | public class RunDemo {
|
---|
17 | [TestMethod]
|
---|
18 | public void RunGridTest() {
|
---|
19 | int maxIterations = 20000; // for poly-10 with 50000 evaluations no successful try with hl yet
|
---|
20 | //var globalRandom = new Random(31415);
|
---|
21 | var localRandSeed = new Random().Next();
|
---|
22 | var reps = 20;
|
---|
23 |
|
---|
24 | var policyFactories = new Func<IBanditPolicy>[]
|
---|
25 | {
|
---|
26 | () => new RandomPolicy(),
|
---|
27 | () => new ActiveLearningPolicy(),
|
---|
28 | // () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
29 | // () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
30 | // () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
31 | // () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
32 | //() => new GaussianThompsonSamplingPolicy(),
|
---|
33 | () => new GaussianThompsonSamplingPolicy(true),
|
---|
34 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1)),
|
---|
35 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1, 1)),
|
---|
36 | //() => new BernoulliThompsonSamplingPolicy(),
|
---|
37 | () => new GenericThompsonSamplingPolicy(new BernoulliModel(1, 1)),
|
---|
38 | () => new EpsGreedyPolicy(0.01),
|
---|
39 | () => new EpsGreedyPolicy(0.05),
|
---|
40 | () => new EpsGreedyPolicy(0.1),
|
---|
41 | () => new EpsGreedyPolicy(0.2),
|
---|
42 | () => new EpsGreedyPolicy(0.5),
|
---|
43 | () => new UCTPolicy(0.01),
|
---|
44 | () => new UCTPolicy(0.05),
|
---|
45 | () => new UCTPolicy(0.1),
|
---|
46 | () => new UCTPolicy(0.5),
|
---|
47 | () => new UCTPolicy(1),
|
---|
48 | () => new UCTPolicy(2),
|
---|
49 | () => new UCTPolicy( 5),
|
---|
50 | () => new UCTPolicy( 10),
|
---|
51 | () => new ModifiedUCTPolicy(0.01),
|
---|
52 | () => new ModifiedUCTPolicy(0.05),
|
---|
53 | () => new ModifiedUCTPolicy(0.1),
|
---|
54 | () => new ModifiedUCTPolicy(0.5),
|
---|
55 | () => new ModifiedUCTPolicy(1),
|
---|
56 | () => new ModifiedUCTPolicy(2),
|
---|
57 | () => new ModifiedUCTPolicy( 5),
|
---|
58 | () => new ModifiedUCTPolicy( 10),
|
---|
59 | () => new UCB1Policy(),
|
---|
60 | () => new UCB1TunedPolicy(),
|
---|
61 | () => new UCBNormalPolicy(),
|
---|
62 | () => new BoltzmannExplorationPolicy(1),
|
---|
63 | () => new BoltzmannExplorationPolicy(10),
|
---|
64 | () => new BoltzmannExplorationPolicy(20),
|
---|
65 | () => new BoltzmannExplorationPolicy(100),
|
---|
66 | () => new BoltzmannExplorationPolicy(200),
|
---|
67 | () => new BoltzmannExplorationPolicy(500),
|
---|
68 | () => new ChernoffIntervalEstimationPolicy( 0.01),
|
---|
69 | () => new ChernoffIntervalEstimationPolicy( 0.05),
|
---|
70 | () => new ChernoffIntervalEstimationPolicy( 0.1),
|
---|
71 | () => new ChernoffIntervalEstimationPolicy( 0.2),
|
---|
72 | () => new ThresholdAscentPolicy(5, 0.01),
|
---|
73 | () => new ThresholdAscentPolicy(5, 0.05),
|
---|
74 | () => new ThresholdAscentPolicy(5, 0.1),
|
---|
75 | () => new ThresholdAscentPolicy(5, 0.2),
|
---|
76 | () => new ThresholdAscentPolicy(10, 0.01),
|
---|
77 | () => new ThresholdAscentPolicy(10, 0.05),
|
---|
78 | () => new ThresholdAscentPolicy(10, 0.1),
|
---|
79 | () => new ThresholdAscentPolicy(10, 0.2),
|
---|
80 | () => new ThresholdAscentPolicy(50, 0.01),
|
---|
81 | () => new ThresholdAscentPolicy(50, 0.05),
|
---|
82 | () => new ThresholdAscentPolicy(50, 0.1),
|
---|
83 | () => new ThresholdAscentPolicy(50, 0.2),
|
---|
84 | () => new ThresholdAscentPolicy(100, 0.01),
|
---|
85 | () => new ThresholdAscentPolicy(100, 0.05),
|
---|
86 | () => new ThresholdAscentPolicy(100, 0.1),
|
---|
87 | () => new ThresholdAscentPolicy(100, 0.2),
|
---|
88 | () => new ThresholdAscentPolicy(500, 0.01),
|
---|
89 | () => new ThresholdAscentPolicy(500, 0.05),
|
---|
90 | () => new ThresholdAscentPolicy(500, 0.1),
|
---|
91 | () => new ThresholdAscentPolicy(500, 0.2),
|
---|
92 | () => new ThresholdAscentPolicy(5000, 0.01),
|
---|
93 | () => new ThresholdAscentPolicy(10000, 0.01),
|
---|
94 | };
|
---|
95 |
|
---|
96 | var instanceFactories = new Func<Random, Tuple<IProblem, int>>[]
|
---|
97 | {
|
---|
98 | //(rand) => Tuple.Create((IProblem)new SantaFeAntProblem(), 17),
|
---|
99 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:false ), 15),
|
---|
100 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:true ), 15),
|
---|
101 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:false), 15),
|
---|
102 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:true), 15),
|
---|
103 | //(rand) => Tuple.Create((IProblem)new SymbolicRegressionPoly10Problem(), 23)
|
---|
104 | (rand) => Tuple.Create((IProblem)new SantaFeAntProblem(), 17)
|
---|
105 | };
|
---|
106 |
|
---|
107 | foreach (var instanceFactory in instanceFactories) {
|
---|
108 | foreach (var useCanonical in new bool[] { true /*, false */ }) {
|
---|
109 | foreach (var randomTries in new int[] { 0 /*, 1, 10 /*, /* 5, 100 /*, 500, 1000 */}) {
|
---|
110 | foreach (var policyFactory in policyFactories) {
|
---|
111 | var myRandomTries = randomTries;
|
---|
112 | var localRand = new Random(localRandSeed);
|
---|
113 | var options = new ParallelOptions();
|
---|
114 | options.MaxDegreeOfParallelism = 1;
|
---|
115 | Parallel.For(0, reps, options, (i) => {
|
---|
116 | Random myLocalRand;
|
---|
117 | lock (localRand)
|
---|
118 | myLocalRand = new Random(localRand.Next());
|
---|
119 |
|
---|
120 | int iterations = 0;
|
---|
121 | var globalStatistics = new SentenceSetStatistics();
|
---|
122 |
|
---|
123 | // var problem = new SymbolicRegressionPoly10Problem();
|
---|
124 | // var problem = new SantaFeAntProblem();
|
---|
125 | //var problem = new PalindromeProblem();
|
---|
126 | //var problem = new HardPalindromeProblem();
|
---|
127 | //var problem = new RoyalPairProblem();
|
---|
128 | //var problem = new EvenParityProblem();
|
---|
129 | // var alg = new MctsSampler(problem.Item1, problem.Item2, myLocalRand, myRandomTries, policy());
|
---|
130 | var instance = instanceFactory(myLocalRand);
|
---|
131 | var problem = instance.Item1;
|
---|
132 | var maxLen = instance.Item2;
|
---|
133 | var alg = new SequentialSearch(problem, maxLen, myLocalRand, myRandomTries,
|
---|
134 | new GenericGrammarPolicy(problem, policyFactory(), useCanonical));
|
---|
135 | // var alg = new SequentialSearch(problem, maxLen, myLocalRand,
|
---|
136 | // myRandomTries,
|
---|
137 | // new GenericFunctionApproximationGrammarPolicy(problem,
|
---|
138 | // useCanonical));
|
---|
139 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 25);
|
---|
140 | //var alg = new AlternativesContextSampler(problem, 25);
|
---|
141 |
|
---|
142 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
143 | iterations++;
|
---|
144 | globalStatistics.AddSentence(sentence, quality);
|
---|
145 | if (iterations % 1000 == 0) {
|
---|
146 | Console.WriteLine("{0,3} {1,5} \"{2,25}\" {3} {4} {5}", i, myRandomTries, policyFactory(), useCanonical, problem.ToString(), globalStatistics);
|
---|
147 | }
|
---|
148 | };
|
---|
149 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
150 | //Console.WriteLine("{0,5} {1,25} {2} {3}",
|
---|
151 | // myRandomTries, policyFactory(), useCanonical,
|
---|
152 | // globalStatistics);
|
---|
153 | };
|
---|
154 |
|
---|
155 | alg.Run(maxIterations);
|
---|
156 | });
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|