- Timestamp:
- 12/15/14 01:20:08 (10 years ago)
- Location:
- branches/Classification-Extensions/HeuristicLab.Problems.DataAnalysis/3.4
- Files:
-
- 1 added
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/Classification-Extensions/HeuristicLab.Problems.DataAnalysis/3.4/HeuristicLab.Problems.DataAnalysis-3.4.csproj
r11683 r11684 175 175 </Compile> 176 176 <Compile Include="Implementation\Classification\ClassificationEnsembleSolution.cs" /> 177 <Compile Include="Implementation\Classification\ClassificationPerformanceMeasuresResultCollection.cs" /> 177 178 <Compile Include="Implementation\Classification\ClassificationProblemData.cs" /> 178 179 <Compile Include="Implementation\Classification\ClassificationProblem.cs" /> -
branches/Classification-Extensions/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs
r11683 r11684 34 34 private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)"; 35 35 private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)"; 36 37 private const string ClassificationPositiveClassValueResultName = "Classification positive class";38 private const string TrainingTruePositiveRateResultName = "True positive rate (training)";39 private const string TrainingTrueNegativeRateResultName = "True negative rate (training)";40 private const string TrainingPositivePredictiveValueResultName = "Positive predictive value (training)";41 private const string TrainingNegativePredictiveValueResultName = "Negative predictive value (training)";42 private const string TrainingFalsePositiveRateResultName = "False positive rate (training)";43 private const string TrainingFalseDiscoveryRateResultName = "False discovery rate (training)";44 private const string TestTruePositiveRateResultName = "True positive rate (test)";45 private const string TestTrueNegativeRateResultName = "True negative rate (test)";46 private const string TestPositivePredictiveValueResultName = "Positive predictive value (test)";47 private const string TestNegativePredictiveValueResultName = "Negative predictive value (test)";48 private const string TestFalsePositiveRateResultName = "False positive rate (test)";49 private const string TestFalseDiscoveryRateResultName = "False discovery rate (test)";50 36 private const string ClassificationPerformanceMeasuresResultName = "Classification Performance Measures"; 51 37 … … 77 63 protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; } 78 64 } 79 80 #region Classification performance measures 81 public ResultCollection ClassificationPerformanceMeasures { 82 get { return ((ResultCollection)this[ClassificationPerformanceMeasuresResultName].Value); } 65 public ClassificationPerformanceMeasuresResultCollection ClassificationPerformanceMeasures { 66 get { return ((ClassificationPerformanceMeasuresResultCollection)this[ClassificationPerformanceMeasuresResultName].Value); } 83 67 protected set { (this[ClassificationPerformanceMeasuresResultName].Value) = value; } 84 68 } 85 86 public string ClassificationPositiveClassValue {87 get { return ((StringValue)ClassificationPerformanceMeasures[ClassificationPositiveClassValueResultName].Value).Value; }88 protected set { ((StringValue)ClassificationPerformanceMeasures[ClassificationPositiveClassValueResultName].Value).Value = value; }89 }90 public double TrainingTruePositiveRate {91 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingTruePositiveRateResultName].Value).Value; }92 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingTruePositiveRateResultName].Value).Value = value; }93 }94 public double TrainingTrueNegativeRate {95 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingTrueNegativeRateResultName].Value).Value; }96 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingTrueNegativeRateResultName].Value).Value = value; }97 }98 public double TrainingPositivePredictiveValue {99 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingPositivePredictiveValueResultName].Value).Value; }100 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingPositivePredictiveValueResultName].Value).Value = value; }101 }102 public double TrainingNegativePredictiveValue {103 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingNegativePredictiveValueResultName].Value).Value; }104 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingNegativePredictiveValueResultName].Value).Value = value; }105 }106 public double TrainingFalsePositiveRate {107 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingFalsePositiveRateResultName].Value).Value; }108 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingFalsePositiveRateResultName].Value).Value = value; }109 }110 public double TrainingFalseDiscoveryRate {111 get { return ((DoubleValue)ClassificationPerformanceMeasures[TrainingFalseDiscoveryRateResultName].Value).Value; }112 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TrainingFalseDiscoveryRateResultName].Value).Value = value; }113 }114 public double TestTruePositiveRate {115 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestTruePositiveRateResultName].Value).Value; }116 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestTruePositiveRateResultName].Value).Value = value; }117 }118 public double TestTrueNegativeRate {119 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestTrueNegativeRateResultName].Value).Value; }120 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestTrueNegativeRateResultName].Value).Value = value; }121 }122 public double TestPositivePredictiveValue {123 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestPositivePredictiveValueResultName].Value).Value; }124 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestPositivePredictiveValueResultName].Value).Value = value; }125 }126 public double TestNegativePredictiveValue {127 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestNegativePredictiveValueResultName].Value).Value; }128 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestNegativePredictiveValueResultName].Value).Value = value; }129 }130 public double TestFalsePositiveRate {131 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestFalsePositiveRateResultName].Value).Value; }132 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestFalsePositiveRateResultName].Value).Value = value; }133 }134 public double TestFalseDiscoveryRate {135 get { return ((DoubleValue)ClassificationPerformanceMeasures[TestFalseDiscoveryRateResultName].Value).Value; }136 protected set { ((DoubleValue)ClassificationPerformanceMeasures[TestFalseDiscoveryRateResultName].Value).Value = value; }137 }138 #endregion139 69 #endregion 140 70 … … 150 80 Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue())); 151 81 Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue())); 152 AddClassificationPerformanceMeasuresResultCollection(); 82 Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n 83 In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.", 84 new ClassificationPerformanceMeasuresResultCollection())); 153 85 } 154 86 … … 160 92 Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue())); 161 93 if (!this.ContainsKey(ClassificationPerformanceMeasuresResultName)) { 162 AddClassificationPerformanceMeasuresResultCollection(); 94 Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n 95 In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.", 96 new ClassificationPerformanceMeasuresResultCollection())); 163 97 RecalculateResults(); 164 98 } 165 }166 167 protected void AddClassificationPerformanceMeasuresResultCollection() {168 ResultCollection performanceMeasures = new ResultCollection();169 performanceMeasures.Add(new Result(ClassificationPositiveClassValueResultName, "The positive class which is used for the performance measure calculations.", new StringValue()));170 performanceMeasures.Add(new Result(TrainingTruePositiveRateResultName, "Sensitivity/True positive rate of the model on the training partition\n(TP/(TP+FN)).", new PercentValue()));171 performanceMeasures.Add(new Result(TrainingTrueNegativeRateResultName, "Specificity/True negative rate of the model on the training partition\n(TN/(FP+TN)).", new PercentValue()));172 performanceMeasures.Add(new Result(TrainingPositivePredictiveValueResultName, "Precision/Positive predictive value of the model on the training partition\n(TP/(TP+FP)).", new PercentValue()));173 performanceMeasures.Add(new Result(TrainingNegativePredictiveValueResultName, "Negative predictive value of the model on the training partition\n(TN/(TN+FN)).", new PercentValue()));174 performanceMeasures.Add(new Result(TrainingFalsePositiveRateResultName, "The false positive rate is the complement of the true negative rate of the model on the training partition.", new PercentValue()));175 performanceMeasures.Add(new Result(TrainingFalseDiscoveryRateResultName, "The false discovery rate is the complement of the positive predictive value of the model on the training partition.", new PercentValue()));176 performanceMeasures.Add(new Result(TestTruePositiveRateResultName, "Sensitivity/True positive rate of the model on the test partition\n(TP/(TP+FN)).", new PercentValue()));177 performanceMeasures.Add(new Result(TestTrueNegativeRateResultName, "Specificity/True negative rate of the model on the test partition\n(TN/(FP+TN)).", new PercentValue()));178 performanceMeasures.Add(new Result(TestPositivePredictiveValueResultName, "Precision/Positive predictive value of the model on the test partition\n(TP/(TP+FP)).", new PercentValue()));179 performanceMeasures.Add(new Result(TestNegativePredictiveValueResultName, "Negative predictive value of the model on the test partition\n(TN/(TN+FN)).", new PercentValue()));180 performanceMeasures.Add(new Result(TestFalsePositiveRateResultName, "The false positive rate is the complement of the true negative rate of the model on the test partition.", new PercentValue()));181 performanceMeasures.Add(new Result(TestFalseDiscoveryRateResultName, "The false discovery rate is the complement of the positive predictive value of the model on the test partition.", new PercentValue()));182 Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n183 In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.", performanceMeasures));184 99 } 185 100 … … 193 108 var positiveClassName = ProblemData.PositiveClassName; 194 109 double positiveClassValue = ProblemData.GetClassValue(positiveClassName); 195 ClassificationP ositiveClassValue = positiveClassName;110 ClassificationPerformanceMeasures.ClassificationPositiveClassValue = positiveClassName; 196 111 ClassificationPerformanceMeasuresCalculator trainingPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassValue); 197 112 ClassificationPerformanceMeasuresCalculator testPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassValue); … … 214 129 TestNormalizedGiniCoefficient = testNormalizedGini; 215 130 216 //performance measures training partition217 131 trainingPerformanceCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState); 218 if (errorState != OnlineCalculatorError.None) { 219 TrainingTruePositiveRate = double.NaN; 220 TrainingTrueNegativeRate = double.NaN; 221 TrainingPositivePredictiveValue = double.NaN; 222 TrainingNegativePredictiveValue = double.NaN; 223 TrainingFalsePositiveRate = double.NaN; 224 TrainingFalseDiscoveryRate = double.NaN; 225 } else { 226 TrainingTruePositiveRate = trainingPerformanceCalculator.TruePositiveRate; 227 TrainingTrueNegativeRate = trainingPerformanceCalculator.TrueNegativeRate; 228 TrainingPositivePredictiveValue = trainingPerformanceCalculator.PositivePredictiveValue; 229 TrainingNegativePredictiveValue = trainingPerformanceCalculator.NegativePredictiveValue; 230 TrainingFalsePositiveRate = trainingPerformanceCalculator.FalsePositiveRate; 231 TrainingFalseDiscoveryRate = trainingPerformanceCalculator.FalseDiscoveryRate; 132 if (errorState == OnlineCalculatorError.None) { 133 ClassificationPerformanceMeasures.TrainingTruePositiveRate = trainingPerformanceCalculator.TruePositiveRate; 134 ClassificationPerformanceMeasures.TrainingTrueNegativeRate = trainingPerformanceCalculator.TrueNegativeRate; 135 ClassificationPerformanceMeasures.TrainingPositivePredictiveValue = trainingPerformanceCalculator.PositivePredictiveValue; 136 ClassificationPerformanceMeasures.TrainingNegativePredictiveValue = trainingPerformanceCalculator.NegativePredictiveValue; 137 ClassificationPerformanceMeasures.TrainingFalsePositiveRate = trainingPerformanceCalculator.FalsePositiveRate; 138 ClassificationPerformanceMeasures.TrainingFalseDiscoveryRate = trainingPerformanceCalculator.FalseDiscoveryRate; 232 139 } 233 //performance measures test partition234 140 testPerformanceCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState); 235 if (errorState != OnlineCalculatorError.None) { 236 TestTruePositiveRate = double.NaN; 237 TestTrueNegativeRate = double.NaN; 238 TestPositivePredictiveValue = double.NaN; 239 TestNegativePredictiveValue = double.NaN; 240 TestFalsePositiveRate = double.NaN; 241 TestFalseDiscoveryRate = double.NaN; 242 } else { 243 TestTruePositiveRate = testPerformanceCalculator.TruePositiveRate; 244 TestTrueNegativeRate = testPerformanceCalculator.TrueNegativeRate; 245 TestPositivePredictiveValue = testPerformanceCalculator.PositivePredictiveValue; 246 TestNegativePredictiveValue = testPerformanceCalculator.NegativePredictiveValue; 247 TestFalsePositiveRate = testPerformanceCalculator.FalsePositiveRate; 248 TestFalseDiscoveryRate = testPerformanceCalculator.FalseDiscoveryRate; 141 if (errorState == OnlineCalculatorError.None) { 142 ClassificationPerformanceMeasures.TestTruePositiveRate = testPerformanceCalculator.TruePositiveRate; 143 ClassificationPerformanceMeasures.TestTrueNegativeRate = testPerformanceCalculator.TrueNegativeRate; 144 ClassificationPerformanceMeasures.TestPositivePredictiveValue = testPerformanceCalculator.PositivePredictiveValue; 145 ClassificationPerformanceMeasures.TestNegativePredictiveValue = testPerformanceCalculator.NegativePredictiveValue; 146 ClassificationPerformanceMeasures.TestFalsePositiveRate = testPerformanceCalculator.FalsePositiveRate; 147 ClassificationPerformanceMeasures.TestFalseDiscoveryRate = testPerformanceCalculator.FalseDiscoveryRate; 249 148 } 250 149 }
Note: See TracChangeset
for help on using the changeset viewer.