Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorCreator.cs @ 2273

Last change on this file since 2273 was 2165, checked in by gkronber, 16 years ago

Removed variable AllowedFeatures in all modeling algorithms. #709

File size: 5.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using System.Threading;
30
31namespace HeuristicLab.SupportVectorMachines {
32  public class SupportVectorCreator : OperatorBase {
33    private Thread trainingThread;
34    private object locker = new object();
35    private bool abortRequested = false;
36
37    public SupportVectorCreator()
38      : base() {
39      //Dataset infos
40      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
44
45      //SVM parameters
46      AddVariableInfo(new VariableInfo("SVMType", "String describing which SVM type is used. Valid inputs are: C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR",
47        typeof(StringData), VariableKind.In));
48      AddVariableInfo(new VariableInfo("SVMKernelType", "String describing which SVM kernel is used. Valid inputs are: LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED",
49        typeof(StringData), VariableKind.In));
50      AddVariableInfo(new VariableInfo("SVMCost", "Cost parameter (C) of C-SVC, epsilon-SVR and nu-SVR", typeof(DoubleData), VariableKind.In));
51      AddVariableInfo(new VariableInfo("SVMNu", "Nu parameter of nu-SVC, one-class SVM and nu-SVR", typeof(DoubleData), VariableKind.In));
52      AddVariableInfo(new VariableInfo("SVMGamma", "Gamma parameter in kernel function", typeof(DoubleData), VariableKind.In));
53      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.New | VariableKind.Out));
54    }
55
56    public override void Abort() {
57      abortRequested = true;
58      lock (locker) {
59        if (trainingThread != null && trainingThread.ThreadState == ThreadState.Running) {
60          trainingThread.Abort();
61        }
62      }
63    }
64
65    public override IOperation Apply(IScope scope) {
66      abortRequested = false;
67      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
68      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
69      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
70      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
71
72      string svmType = GetVariableValue<StringData>("SVMType", scope, true).Data;
73      string svmKernelType = GetVariableValue<StringData>("SVMKernelType", scope, true).Data;
74
75      //extract SVM parameters from scope and set them
76      SVM.Parameter parameter = new SVM.Parameter();
77      parameter.SvmType = (SVM.SvmType)Enum.Parse(typeof(SVM.SvmType), svmType, true);
78      parameter.KernelType = (SVM.KernelType)Enum.Parse(typeof(SVM.KernelType), svmKernelType, true);
79      parameter.C = GetVariableValue<DoubleData>("SVMCost", scope, true).Data;
80      parameter.Nu = GetVariableValue<DoubleData>("SVMNu", scope, true).Data;
81      parameter.Gamma = GetVariableValue<DoubleData>("SVMGamma", scope, true).Data;
82
83      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, targetVariable, start, end);
84      SVM.RangeTransform rangeTransform = SVM.Scaling.DetermineRange(problem);
85      SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, rangeTransform);
86
87      SVM.Model model = StartTraining(scaledProblem, parameter);
88      if (!abortRequested) {
89        //persist variables in scope
90        SVMModel modelData = new SVMModel();
91        modelData.Model = model;
92        modelData.RangeTransform = rangeTransform;
93        scope.AddVariable(new Variable(scope.TranslateName("SVMModel"), modelData));
94        return null;
95      } else {
96        return new AtomicOperation(this, scope);
97      }
98    }
99
100    private SVM.Model StartTraining(SVM.Problem scaledProblem, SVM.Parameter parameter) {
101      SVM.Model model = null;
102      lock (locker) {
103        if (!abortRequested) {
104          trainingThread = new Thread(() => {
105            model = SVM.Training.Train(scaledProblem, parameter);
106          });
107          trainingThread.Start();
108        }
109      }
110      if (!abortRequested) {
111        trainingThread.Join();
112        trainingThread = null;
113      }
114      return model;
115    }
116  }
117}
Note: See TracBrowser for help on using the repository browser.