Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorCreator.cs @ 2347

Last change on this file since 2347 was 2347, checked in by gkronber, 15 years ago

Worked on SVR algorithm for time-series. #705

File size: 5.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using System.Threading;
30
31namespace HeuristicLab.SupportVectorMachines {
32  public class SupportVectorCreator : OperatorBase {
33    private Thread trainingThread;
34    private object locker = new object();
35    private bool abortRequested = false;
36
37    public SupportVectorCreator()
38      : base() {
39      //Dataset infos
40      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
46
47      //SVM parameters
48      AddVariableInfo(new VariableInfo("SVMType", "String describing which SVM type is used. Valid inputs are: C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR",
49        typeof(StringData), VariableKind.In));
50      AddVariableInfo(new VariableInfo("SVMKernelType", "String describing which SVM kernel is used. Valid inputs are: LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED",
51        typeof(StringData), VariableKind.In));
52      AddVariableInfo(new VariableInfo("SVMCost", "Cost parameter (C) of C-SVC, epsilon-SVR and nu-SVR", typeof(DoubleData), VariableKind.In));
53      AddVariableInfo(new VariableInfo("SVMNu", "Nu parameter of nu-SVC, one-class SVM and nu-SVR", typeof(DoubleData), VariableKind.In));
54      AddVariableInfo(new VariableInfo("SVMGamma", "Gamma parameter in kernel function", typeof(DoubleData), VariableKind.In));
55      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.New | VariableKind.Out));
56    }
57
58    public override void Abort() {
59      abortRequested = true;
60      lock (locker) {
61        if (trainingThread != null && trainingThread.ThreadState == ThreadState.Running) {
62          trainingThread.Abort();
63        }
64      }
65    }
66
67    public override IOperation Apply(IScope scope) {
68      abortRequested = false;
69      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
70      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
71      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
72      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
73      int maxTimeOffset = GetVariableValue<IntData>("MaxTimeOffset", scope, true).Data;
74      int minTimeOffset = GetVariableValue<IntData>("MinTimeOffset", scope, true).Data;
75      string svmType = GetVariableValue<StringData>("SVMType", scope, true).Data;
76      string svmKernelType = GetVariableValue<StringData>("SVMKernelType", scope, true).Data;
77
78      //extract SVM parameters from scope and set them
79      SVM.Parameter parameter = new SVM.Parameter();
80      parameter.SvmType = (SVM.SvmType)Enum.Parse(typeof(SVM.SvmType), svmType, true);
81      parameter.KernelType = (SVM.KernelType)Enum.Parse(typeof(SVM.KernelType), svmKernelType, true);
82      parameter.C = GetVariableValue<DoubleData>("SVMCost", scope, true).Data;
83      parameter.Nu = GetVariableValue<DoubleData>("SVMNu", scope, true).Data;
84      parameter.Gamma = GetVariableValue<DoubleData>("SVMGamma", scope, true).Data;
85
86      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, targetVariable, start, end, minTimeOffset, maxTimeOffset);
87      SVM.RangeTransform rangeTransform = SVM.Scaling.DetermineRange(problem);
88      SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, rangeTransform);
89
90      SVM.Model model = StartTraining(scaledProblem, parameter);
91      if (!abortRequested) {
92        //persist variables in scope
93        SVMModel modelData = new SVMModel();
94        modelData.Model = model;
95        modelData.RangeTransform = rangeTransform;
96        scope.AddVariable(new Variable(scope.TranslateName("SVMModel"), modelData));
97        return null;
98      } else {
99        return new AtomicOperation(this, scope);
100      }
101    }
102
103    private SVM.Model StartTraining(SVM.Problem scaledProblem, SVM.Parameter parameter) {
104      SVM.Model model = null;
105      lock (locker) {
106        if (!abortRequested) {
107          trainingThread = new Thread(() => {
108            model = SVM.Training.Train(scaledProblem, parameter);
109          });
110          trainingThread.Start();
111        }
112      }
113      if (!abortRequested) {
114        trainingThread.Join();
115        trainingThread = null;
116      }
117      return model;
118    }
119  }
120}
Note: See TracBrowser for help on using the repository browser.