Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorCreator.cs @ 1848

Last change on this file since 1848 was 1848, checked in by gkronber, 15 years ago

Implemented #632 (Abort functionality for Operator SupportVectorCreator).

File size: 6.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using System.Threading;
30
31namespace HeuristicLab.SupportVectorMachines {
32  public class SupportVectorCreator : OperatorBase {
33    private Thread trainingThread;
34    private object locker = new object();
35    private bool abortRequested = false;
36
37    public override bool SupportsAbort {
38      get {
39        return true;
40      }
41    }
42
43    public SupportVectorCreator()
44      : base() {
45      //Dataset infos
46      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
47      AddVariableInfo(new VariableInfo("AllowedFeatures", "List of indexes of allowed features", typeof(ItemList<IntData>), VariableKind.In));
48      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
49      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
50      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
51
52      //SVM parameters
53      AddVariableInfo(new VariableInfo("SVMType", "String describing which SVM type is used. Valid inputs are: C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR",
54        typeof(StringData), VariableKind.In));
55      AddVariableInfo(new VariableInfo("SVMKernelType", "String describing which SVM kernel is used. Valid inputs are: LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED",
56        typeof(StringData), VariableKind.In));
57      AddVariableInfo(new VariableInfo("SVMCost", "Cost parameter (C) of C-SVC, epsilon-SVR and nu-SVR", typeof(DoubleData), VariableKind.In));
58      AddVariableInfo(new VariableInfo("SVMNu", "Nu parameter of nu-SVC, one-class SVM and nu-SVR", typeof(DoubleData), VariableKind.In));
59      AddVariableInfo(new VariableInfo("SVMGamma", "Gamma parameter in kernel function", typeof(DoubleData), VariableKind.In));
60      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.New | VariableKind.Out));
61      AddVariableInfo(new VariableInfo("SVMRangeTransform", "The applied transformation during the learning the model", typeof(SVMRangeTransform), VariableKind.New | VariableKind.Out));
62    }
63
64    public override void Abort() {
65      abortRequested = true;
66      lock (locker) {
67        if (trainingThread != null && trainingThread.ThreadState == ThreadState.Running) {
68          trainingThread.Abort();
69        }
70      }
71    }
72
73    public override IOperation Apply(IScope scope) {
74      abortRequested = false;
75      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
76      ItemList<IntData> allowedFeatures = GetVariableValue<ItemList<IntData>>("AllowedFeatures", scope, true);
77      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
78      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
79      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
80
81      string svmType = GetVariableValue<StringData>("SVMType", scope, true).Data;
82      string svmKernelType = GetVariableValue<StringData>("SVMKernelType", scope, true).Data;
83
84      //extract SVM parameters from scope and set them
85      SVM.Parameter parameter = new SVM.Parameter();
86      parameter.SvmType = (SVM.SvmType)Enum.Parse(typeof(SVM.SvmType), svmType, true);
87      parameter.KernelType = (SVM.KernelType)Enum.Parse(typeof(SVM.KernelType), svmKernelType, true);
88      parameter.C = GetVariableValue<DoubleData>("SVMCost", scope, true).Data;
89      parameter.Nu = GetVariableValue<DoubleData>("SVMNu", scope, true).Data;
90      parameter.Gamma = GetVariableValue<DoubleData>("SVMGamma", scope, true).Data;
91
92      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, allowedFeatures, targetVariable, start, end);
93      SVM.RangeTransform rangeTransform = SVM.Scaling.DetermineRange(problem);
94      SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, rangeTransform);
95
96      SVM.Model model = StartTraining(scaledProblem, parameter);
97      if (!abortRequested) {
98        //persist variables in scope
99        SVMModel modelData = new SVMModel();
100        modelData.Data = model;
101        scope.AddVariable(new Variable(scope.TranslateName("SVMModel"), modelData));
102        SVMRangeTransform rangeTransformData = new SVMRangeTransform();
103        rangeTransformData.Data = rangeTransform;
104        scope.AddVariable(new Variable(scope.TranslateName("SVMRangeTransform"), rangeTransformData));
105      }
106      return null;
107    }
108
109    private SVM.Model StartTraining(SVM.Problem scaledProblem, SVM.Parameter parameter) {
110      SVM.Model model = null;
111      lock (locker) {
112        if (!abortRequested) {
113          trainingThread = new Thread(() => {
114              model = SVM.Training.Train(scaledProblem, parameter);
115          });
116          trainingThread.Start();
117        }
118      }
119      trainingThread.Join();
120      trainingThread = null;
121      return model;
122    }
123  }
124}
Note: See TracBrowser for help on using the repository browser.