Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorCreator.cs @ 1837

Last change on this file since 1837 was 1837, checked in by gkronber, 15 years ago

Implemented #627 (Datatypes of SVM should be wrapped into dedicated classes that implement IItem).

File size: 5.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29
30namespace HeuristicLab.SupportVectorMachines {
31  public class SupportVectorCreator : OperatorBase {
32
33    public SupportVectorCreator()
34      : base() {
35      //Dataset infos
36      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
37      AddVariableInfo(new VariableInfo("AllowedFeatures", "List of indexes of allowed features", typeof(ItemList<IntData>), VariableKind.In));
38      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
41
42      //SVM parameters
43      AddVariableInfo(new VariableInfo("SVMType", "String describing which SVM type is used. Valid inputs are: C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR",
44        typeof(StringData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("SVMKernelType", "String describing which SVM kernel is used. Valid inputs are: LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED",
46        typeof(StringData), VariableKind.In));
47      AddVariableInfo(new VariableInfo("SVMCost", "Cost parameter (C) of C-SVC, epsilon-SVR and nu-SVR", typeof(DoubleData), VariableKind.In));
48      AddVariableInfo(new VariableInfo("SVMNu", "Nu parameter of nu-SVC, one-class SVM and nu-SVR", typeof(DoubleData), VariableKind.In));
49      AddVariableInfo(new VariableInfo("SVMGamma", "Gamma parameter in kernel function", typeof(DoubleData), VariableKind.In));
50      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.New | VariableKind.Out));
51      AddVariableInfo(new VariableInfo("SVMRangeTransform", "The applied transformation during the learning the model", typeof(SVMRangeTransform), VariableKind.New | VariableKind.Out));
52
53    }
54
55    public override IOperation Apply(IScope scope) {
56      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
57      ItemList<IntData> allowedFeatures = GetVariableValue<ItemList<IntData>>("AllowedFeatures", scope, true);
58      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
59      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
60      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
61
62      string svmType = GetVariableValue<StringData>("SVMType", scope, true).Data;
63      string svmKernelType = GetVariableValue<StringData>("SVMKernelType", scope, true).Data;
64
65      //extract SVM parameters from scope and set them
66      SVM.Parameter parameter = new SVM.Parameter();
67      parameter.SvmType = (SVM.SvmType)Enum.Parse(typeof(SVM.SvmType), svmType, true);
68      parameter.KernelType = (SVM.KernelType)Enum.Parse(typeof(SVM.KernelType), svmKernelType, true);
69      parameter.C = GetVariableValue<DoubleData>("SVMCost", scope, true).Data;
70      parameter.Nu = GetVariableValue<DoubleData>("SVMNu", scope, true).Data;
71      parameter.Gamma = GetVariableValue<DoubleData>("SVMGamma", scope, true).Data;
72
73      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, allowedFeatures, targetVariable, start, end);
74      SVM.RangeTransform rangeTransform = SVM.Scaling.DetermineRange(problem);
75      SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, rangeTransform);
76      SVM.Model model = SVM.Training.Train(scaledProblem, parameter);
77
78      //persist variables in scope
79      SVMModel modelData = new SVMModel();
80      modelData.Data = model;
81      scope.AddVariable(new Variable(scope.TranslateName("SVMModel"),modelData));
82      SVMRangeTransform rangeTransformData = new SVMRangeTransform();
83      rangeTransformData.Data = rangeTransform;
84      scope.AddVariable(new Variable(scope.TranslateName("SVMRangeTransform"),rangeTransformData));
85
86      return null;
87    }
88
89   
90  }
91}
Note: See TracBrowser for help on using the repository browser.